
Easy5 2021.1

Reference Manual
For Windows® and Linux®

http://www.mscsoftware.com/Contents/Services/Technical-Support/Contact-Technical-Support.aspx

Disclaimer
This documentation, as well as the software described in it, is furnished under license and may be used only in accordance with the
terms of such license.
MSC Software Corporation reserves the right to make changes in specifications and other information contained in this document
without prior notice.
The concepts, methods, and examples presented in this text are for illustrative and educational purposes only, and are not intended
to be exhaustive or to apply to any particular engineering problem or design. MSC Software Corporation assumes no liability or
responsibility to any person or company for direct or indirect damages resulting from the use of any information contained herein.
User Documentation: Copyright © 2021 MSC Software Corporation. Printed in U.S.A. All Rights Reserved.
This notice shall be marked on any reproduction of this documentation, in whole or in part. Any reproduction or distribution of this
document, in whole or in part, without the prior written consent of MSC Software Corporation is prohibited.
This software may contain certain third-party software that is protected by copyright and licensed from MSC Software suppliers.
Additional terms and conditions and/or notices may apply for certain third party software. Such additional third party software terms
and conditions and/or notices may be set forth in documentation and/or at http://www.mscsoftware.com/thirdpartysoftware (or successor
website designated by MSC from time to time). Portions of this software are owned by Siemens Product Lifecycle Management, Inc.
© Copyright 2021
The MSC Software logo, MSC, MSC Adams, MD Adams, Adams and Easy5 are trademarks or registered trademarks of MSC Software
Corporation and/or its subsidiaries in the United States and other countries. Hexagon and the Hexagon logo are trademarks or
registered trademarks of Hexagon AB and/or its subsidiaries. NASTRAN is a registered trademark of NASA. FLEXlm and FlexNet
Publisher are trademarks or registered trademarks of Flexera Software. Parasolid is a registered trademark of Siemens Product
Lifecycle Management, Inc. All other trademarks are the property of their respective owners.
Use, duplicate, or disclosure by the U.S. Government is subjected to restrictions as set forth in FAR 12.212 (Commercial Computer
Software) and DFARS 227.7202 (Commercial Computer Software and Commercial Computer Software Documentation), as
applicable.

January 5, 2021

Europe, Middle East, Africa
MSC Software GmbH
Am Moosfeld 13
81829 Munich, Germany
Telephone: (49) 89 431 98 70
Email: europe@mscsoftware.com

Asia-Pacific
MSC Software (S) Pte. Ltd.
100 Beach Road
#16-05 Shaw Tower
Singapore 189702
Telephone: 65-6272-0082
Email: APAC.Contact@mscsoftware.com

Corporate
MSC Software Corporation
4675 MacArthur Court, Suite 900
Newport Beach, CA 92660
Telephone: (714) 540-8900
Toll Free Number: 1 855 672 7638
Email: americas.contact@mscsoftware.com

Japan
MSC Software Japan Ltd.
KANDA SQUARE 16F
2-2-1 Kanda Nishikicho, Chiyoda-ku
Tokyo 101-0054, Japan
Telephone: (81)(3) 6275 0870
Email: MSCJ.Market@mscsoftware.com

Worldwide Web
www.mscsoftware.com

Support

mailto:info.europe@mscsoftware.com
http://www.mscsoftware.com/thirdpartysoftware
mailto:APAC.Contact@mscsoftware.com

Documentation Feedback
At MSC Software, we strive to produce the highest quality documentation and welcome your feedback.
If you have comments or suggestions about our documentation, write to us at: documentation-
feedback@mscsoftware.com.

Please include the following information with your feedback:

 Document name
 Release/Version number
 Chapter/Section name
 Topic title (for Online Help)
 Brief description of the content (for example, incomplete/incorrect information, grammatical

errors, information that requires clarification or more details and so on).
 Your suggestions for correcting/improving documentation

You may also provide your feedback about MSC Software documentation by taking a short 5-minute
survey at: http://msc-documentation.questionpro.com.

Note: The above mentioned e-mail address is only for providing documentation specific
feedback. If you have any technical problems, issues, or queries, please contact Technical
Support.

https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8019304
https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8019304
https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8019304
https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8019304
mailto:documentation-feedback@mscsoftware.com
mailto:documentation-feedback@mscsoftware.com
http://msc-documentation.questionpro.com/

Con t en t s
Reference Manual

Contents
Preface

Conventions Used in This Guide . xviii

1 Reference Manual Topics
Overview . 5
Accelerator Keys . 5
Adding Components . 6

Add Components Window. 6
Adding Components to the Schematic . 9
Add Components by Name Reference. 10

Analyses . 11
Nonlinear Analyses . 11
Linear Analyses . 12

Analysis Data Form . 12
Analysis Data Form Header. 13
Analysis Data Form. 14

Auxiliary Input File . 15
Analysis Title . 15
Time of the Analysis . 16
Initial Operating Point . 16
Model Explorer “Pickable” Fields . 17
Auxiliary Input File . 18
Creating an Auxiliary Input File . 18
Using an “auxfile” To Enter Blocks of Data . 19
Specifying a Label in an Auxiliary Input File . 20

Auxiliary Input File Data Format . 21
PARAMETER VALUES Command . 22
Scalar Parameter Data . 22
Array Parameter Data . 23
Expressions . 26
Tabular Data. 26

“Analysis Only” Mode . 29

Reference Manualvi
Operations Allowed . 30
Disabled Functionality . 30
Creating a “Locked Configuration” Model for Distribution Purposes . 31
Using a Locked Configuration Easy5 Model . 32

Background Processes . 32
C Component . 34

Adding C Code . 35
Example C Code Component . 36
Adding C Declarations . 38
C Code Files and Structure . 38

Code Components . 39
Command Line Options . 40

Option Examples . 43
Compiling External Code . 43

Default Compiler Options . 44
Obtaining Current Compiler Options . 44
Setting Debug Compiler Options. 45
User Specified Compiler Options . 45
Examples of Compiling External Code. 45
Compiling and Linking Mixed Code. 46

Components . 51
Component Basics . 51
Blocks . 54
Standard Components . 54
Code Components . 55
User-defined Library Components . 56
Extension Components. 57
Dimensioned Components . 58

Component Data Table . 60
Documentation/Configuration Tab . 60
States Tab . 65
Variables Tab . 66
Version Tab . 67
User-Comments Tab . 67

Connecting Components . 67
Rules for Connecting Components . 68
Default Connections . 68
Port Connections . 70
Default Port Connection Points . 71
Custom Connections . 72
Making a Branch Connection . 74
Connecting Incompatibly Vectorized Components. 75

Connection Lines . 76

viiContents
Moving Connection Line Endpoints . 76
Moving Connection Line Segments . 77
Changing an Anchored Connection Back to an Autoroute Connection . 78
Customized Line Routing . 78
Defining Connection Line Labels and Attributes . 80
Connection Line Navigation. 83
Submodel Connection Labels . 84
Connection Label Options . 84
Moving Submodel Connection Nodes . 85
Connection Line Color Dots. 86

Copying Components and Models . 87
Copying Components within a Model . 87
Copying Components From or To Another Model. 88
Copying Components With User-defined Names . 88

Data Display . 88
Data Types . 92

States. 93
Variables . 93
Parameters. 93
Tables . 93

Debugging the Model and Analysis . 94
Example of Using the Symbolic Debugger on Windows . 94
Example of Using the Symbolic Debugger on a Linux Platform . 97

Deleting Components and Connections. 100
Deleting Components . 100
Deleting Connections . 101

Discrete (Digital) System Analysis . 102
Operating Point Considerations . 102
Linear Analysis Considerations . 102
Integration Method Considerations . 103

Discrete (Digital) System Modeling . 103
Digital Models. 103
Hybrid Models . 104
Discrete System Modeling Using Fortran, C and LIbrary Components . 105
Matching TAU Method (obsolete) . 106

Documenting and Printing the Model . 109
Generating a Model Document File . 109

Exporting an Easy5 Model as a MAT EMX Function . 111
MAT function “ezmodel”. 111

Easy5 Window . 111
Description Lines . 112

Reference Manualviii
Model Info . 113
Menu Bar . 113
Tool Bar . 113
Dockable Add Component WIndow. 113
Scroll Bars . 113
Message Line. 114
Schematic Window . 114
Working with Easy5 Windows. 114

Eigenvalue Sensitivity Analysis. 116
Setting up an Eigenvalue Sensitivity Analysis . 116

Eigenvalue Sensitivity Analysis Method . 117
Executable Model. 118

Create Executable . 119
Link External Object . 120
Solve Implicit Loops . 120
Force Explicit Typing . 120
Check for Duplicate Names . 120
Debug Mode . 120
Stop Create Executable . 121

Executable Output Files . 121
Create Executable Process . 121
Model Generation Listing File . 122
Executable Source File . 122
Executable Error File . 124

External (Environment) Variables . 124
Fortran Component . 129

Forced Explicit Typing . 129
Using Integer or Logical Variables in Fortran Code . 130
Adding Nonexecutable Fortran Statements . 131
Reserved Fortran Unit Numbers . 132
Adding Comments to Fortran Code . 132
Easy5 Reserved Words. 132
Calculating Initial Condition Values in a User-Code Component. 134
Easy5 Matrix Operations. 134
Sorting Fortran Component Code . 135

Function Scan Analysis . 135
Setting up a Function Scan Analysis . 136
Function Scan with Two Independent Values . 138

Function Scan Analysis Method . 139
Graphic Files, EMFs, and PostScript . 139

Generating the Schematic Block Diagram EMF Graphics File . 139
Generating Plotter EMF Graphics File . 141
Using EMF Graphics . 141

ixContents
Overriding Hard copy and EMF Plot Curve and Grid Widths . 142
Exporting Plot Files . 142
Importing a PostScript File Into a Document . 144

Icon Editor. 144
Implicit Model. 145

Definition of an Implicit Model. 146
Example of an Implicit Model . 146
How to Break Implicit Loops . 149

Initial Condition Calculation. 151
Initialization Statement . 152
Integration Methods . 153

The Integration Method. 153
Integration Methods Available . 154
Definition of Terms . 155
The BCS Gear Method. 157
The Runge-Kutta Methods . 157
The Huen Method . 157
The Euler Method . 157
The Adams Method. 158
The User-defined Method . 158

Integration Method Selection Guidelines . 160
Guidelines for Setting Error Controls . 161

Interactive Simulation . 163
Linear Model Generation Analysis . 163

Types of Linear Model Generation Analysis . 163
Setting up a Linear Model Generation Analysis . 165
Controlling the Calculation . 168
Saving the Linear Model System Matrices. 168

Linear Model Generation Method. 168
Continuous Systems . 168
Stability Analysis for Sampled-Data Systems . 175

Linking External Code . 175
Linking Routines Using the Build Menu . 176
Linking Routines Using the EASY5_OBJECT Variable. 177
Linking Routines Using an Object Library . 178
Linking Library Component Routines. 179

Library Component Code . 180
Using Variable Dimensions in Library Component Code. 180
Using Integer or Logical Variables in Library Component Code . 181
Configurations . 182
Component Libraries . 182

Reference Manualx
Matrix Operations . 183
Matrix Equations . 183
Matrix Operation Subroutines . 186

Matrix Editor. 188
Creating a Data Table. 188

Menus. 190
File Menu. 190
Edit Menu . 192
View Menu . 194
Options Menu. 195
Library Menu . 196
Build Menu. 197
Analysis Menu . 198
Submodel Menu. 200
Help Menu . 200
Using Shortcut Keys to Open and Select Menus . 202
Using Arrow Keys to Select Menu Items . 202
Closing an Opened Menu . 203

Menus: Shortcut Menu. 203
Model Explorer Window. 209

Pick Method. 210
Model Files . 211
Modeling Fundamentals . 213

Example Problem . 213
Block Diagram Modeling Method . 214
Component “Systems Diagram” Modeling Method . 215
User-defined Component Modeling Method . 217
State Variable Modeling Method . 218

Multiple Analysis . 220
Setting up Multiple Analysis . 220
Understanding the Setup Form. 222
Defining an Analysis Property . 223

Open Model Dialog . 225
Bypassing the Open Model Dialog . 225
Starting a New Model. 226
Opening an Existing Model . 226
Opening a Damaged Model . 226
Checking Background Processes . 226

Operating Point . 228
Creating an Operating Point . 228
Operating Point Files . 229
Editing the Operating Point File . 230

xiContents
Parameters - Defining Input Values . 230
Matrix Editor Window . 231

Plot Tables Analysis . 232
Setting up a Plot Tables Analysis . 232

Power Spectral Density Analysis . 233
The Power Spectral Density Analysis Data Form . 234
The PSD Input Noise Distribution Parameters Form. 236
Power Spectral Density Analysis Outputs . 238

Power Spectral Density Analysis Method . 238
Print Options . 241

Windows Print Options . 241
Linux Print Options . 241

Reserved Words . 242
General Reserved Words. 243
Physical and Mathematical Constants Reserved Words . 246

Root Locus Analysis . 246
Setting up a Root Locus Analysis . 247
Root Locus Analysis Method . 250

Schematic Manipulation . 252
Moving Components . 252
Moving the Window . 253
Viewing the Entire Schematic . 253
Returning to the Previous Schematic View . 253
Locating Components . 253

Simulation Analysis . 254
Setting up a Simulation. 254
Setting Up Simulation Options. 257
Setting up the Integration . 258
Setting up Simulation Plots . 260
Setting up Simulation Print Output . 263
Specifying Secondary Plotting and Printing Rates . 265
Saving a Final Simulation Operating Point . 266
Executing the Simulation . 266
Simulation Outputs Results . 267

Simulation Monitor . 268
What is the Simulation Monitor? . 268
Activating the Simulation Monitor . 268
Simulation Monitor Plotter Features . 268

Simulation Troubleshooting. 269
Type of Failure . 269
Simulation Failure Error Messages . 270

Reference Manualxii
Write Your Own Diagnostics to the Output Listing File. 271
Monitoring CPU Time During a Simulation . 272
Killing a Simulation Run . 272
Integration Problems . 272

Single Call Analysis . 275
Sort Blocks . 276

Model Sorting. 276
Defining Sort Blocks. 277
Fortran and Library Component Sort Blocks . 278

Stability Margins Analysis . 278
Setting up a Stability Margins Analysis . 279
Limitations . 279

Stability Margin Analysis Method . 280
States . 282

Continuous States . 283
Sample States . 284
Delay States. 285

States: Defining Values and Controls . 286
State Initial Conditions . 286
Error Controls. 287
Freezing States . 287

Steady-State Analysis . 287
Setting up a Steady-State Analysis. 288
Steady-State Analysis Outputs . 291

Steady-State Analysis Method . 292
Steady-State Analysis Troubleshooting. 293
Steady-State May Fail to Converge. 294
Overcoming Steady-State Non-Convergence . 294

Stop and Exit Flags . 295
Terminating Using the ISTOP Flag . 295

Submodels . 296
Submodel Menu. 300
Defining a Submodel . 300
Opening and Closing a Submodel . 301
Submodel Labels . 302
Submodel Connection Lines . 303
Editing Submodel Properties . 303
Expanding a Submodel. 304
Navigating Submodels . 304

Switch States . 305
What Switch States Represent . 306
The Advantages of Switch States . 307

xiiiContents
Using Switch-State Standard Components . 309
Using Switch States in User Code and Library Components. 310
Example of Using Switch States . 310

Temporary Settings File . 313
Creating a New Temporary Settings File . 313
Entering and Editing Data in the Temporary Settings Editor. 314
Applying a Temporary Settings File to an Analysis. 317
Loading Temporary Settings Data Into the Model . 318

Termination Commands . 318
Text Editor. 320

User-Defined Text Editor. 321
TIME - Testing on the Value of Time . 321
Transfer Function Analysis . 322

The Transfer Function Data Form . 323
Specifying the Transfer Function Input . 323
Specifying the Transfer Function Output . 324
Requesting a Frequency Response Plot. 324
Transfer Function Analysis Output Data . 325

Transfer Function Analysis Methods . 326
Frequency Response Method . 326
Selecting Frequency Points. 327
Transfer Function Analysis Method Selection . 327
Coordinate Transformation . 328

Transfer Function Troubleshooting . 329
Transfer Function of Sampled Data Systems . 334

Stability Margins for Sampled Data Systems. 334
Single Rate Systems. 337
Multi-Rate Systems . 338

User-Defined Names . 341
Defining User-defined Names . 342
User-defined Name Menu Options . 343
Resolving User-Defined Name Conflicts . 343
Changing User-Defined Names . 344

References . 345
Suggested Reading. 346

A Summary of Analysis Commands
Overview . 348
Data Input Commands . 348

Reference Manualxiv
State Control Commands. 348
Operating Point Commands. 349
Eigenvalue Sensitivity Analysis. 350
Function Scan Analysis Commands . 350
Linear Model Analysis Commands . 350
Root Locus Analysis Commands . 351
Simulation Analysis Commands . 352
Stability Margin Analysis Commands . 353
Steady-State Analysis Commands . 353
Transfer Function Analysis . 354
Plot Commands . 354
Print Commands . 355

B Guide to Numerical Integration
Overview. 358
Numerical Stability . 358
Accuracy and Error Control . 361
Integration Method Selection Guidelines . 364

C Discrete Analysis Techniques
Overview. 368
Linear Sampled-Data System Equations . 368

Numerical Calculation of Continuous-System Transition Matrix . 371
Discrete System Transition Matrix . 371
Total Transition Matrix for a Single-Rate System . 372

The Discrete Linear-Model Matrices for a Single-Rate System . 372
A Single-Rate Example . 374
Total Transition Matrix for a Multi-Rate System . 376

D Batch Mode Commands
Overview. 380

Batch Mode Command. 380
Examples of Batch Commands . 381

External Variables . 382
Examples: . 383

xvContents
Extraneous Easy5 Batch Files . 384
Command Definitions. 385
Python Multiprocessing . 385

Windows . 387
Linux (or Windows) . 387

Black Box (BBX) Export and Analysis . 388

E Program Limits
Modeling Limitations . 392
Analysis Limitations . 393

Reference Manualxvi

Preface
MSC Nastran Implicit Nonlinear (SOL 600) User’s GuideReference Manual

Preface

 Conventions Used in This Guide xviii

Reference Manual
Conventions Used in This Guide

xviii
The Easy5 Reference Manual is a companion document to the Easy5 User Guide and contains reference
material in greater detail than the user guide.

This preface explains how to use the mouse to select menus and perform other techniques in Easy5.

For ease-of-use, topics are presented in alphabetical order.

In addition to the Easy5 topics reference, the following Appendixes are also included:

 Ap. A: Summary of Analysis Commands

 Ap. B: Guide to Numerical Integration

 Ap. C: Discrete Analysis Techniques

 Ap. D: Batch Mode Commands

 Ap. E: Program Limits

Conventions Used in This Guide
This guide uses the following text conventions to identify functions and procedures:

 Text in Courier font indicates a file name, command line text, or programming text.
easy5x -help

 Text in an italic font enclosed in < > indicates a variable file name that is specific to your computer.

Select the <model_name>.exe file from the window.

 Most keyboard shortcuts require that you press the Control key together with another key
simultaneously and are written as designated in the previous convention.

Press Ctrl+S.

 Text in a bold font with right angle brackets between words indicates that you select a menu and
subsequent submenus with your mouse.

Go to File > Print Preview to view your document.

 Text in bold font indicates an action that you need to perform.

Select the Hydraulic_Act model.

Click OK to close the window.

Several icons are also used throughout this guide to bring your attention to certain items.

Items preceded by the Windows logo apply only to the Windows operating system.

Note: Notes are used to highlight certain important information.

Chapter 1: Reference Manual Topics
MSC Nastran Implicit Nonlinear (SOL 600) User’s GuideReference Manual

1 Reference Manual Topics

 Overview 5

 Accelerator Keys 5

 Adding Components 6

 Analyses 11

 Analysis Data Form 12

 Auxiliary Input File 15

 Auxiliary Input File Data Format 21

 “Analysis Only” Mode 29

 Background Processes 32

 C Component 34

 Code Components 39

 Command Line Options 40

 Compiling External Code 43

 Components 51

 Component Data Table 60

 Connecting Components 67

 Connection Lines 76

 Copying Components and Models 87

 Data Display 88

Reference Manual2
 Data Types 92

 Debugging the Model and Analysis 94

 Deleting Components and Connections 100

 Discrete (Digital) System Analysis 102

 Discrete (Digital) System Modeling 103

 Documenting and Printing the Model 109

 Exporting an Easy5 Model as a MAT EMX Function 111

 Easy5 Window 111

 Eigenvalue Sensitivity Analysis 116

 Eigenvalue Sensitivity Analysis Method 117

 Executable Model 118

 Executable Output Files 121

 External (Environment) Variables 124

 Fortran Component 129

 Function Scan Analysis 135

 Function Scan Analysis Method 139

 Graphic Files, EMFs, and PostScript 139

 Icon Editor 144

 Implicit Model 145

 Initial Condition Calculation 151

 Initialization Statement 152

 Integration Methods 153

 Integration Method Selection Guidelines 160

 Interactive Simulation 163

 Linear Model Generation Analysis 163

 Linear Model Generation Method 168

 Linking External Code 175

 Library Component Code 180

3Chapter 1: Reference Manual Topics
 Matrix Operations 183

 Matrix Editor 188

 Menus 190

 Menus: Shortcut Menu 203

 Model Explorer Window 209

 Model Files 211

 Modeling Fundamentals 213

 Multiple Analysis 220

 Open Model Dialog 225

 Operating Point 228

 Parameters - Defining Input Values 230

 Plot Tables Analysis 232

 Power Spectral Density Analysis 233

 Power Spectral Density Analysis Method 238

 Print Options 241

 Reserved Words 242

 Root Locus Analysis 246

 Schematic Manipulation 252

 Simulation Analysis 254

 Simulation Monitor 268

 Simulation Troubleshooting 269

 Single Call Analysis 275

 Sort Blocks 276

 Stability Margins Analysis 278

 Stability Margin Analysis Method 280

Reference Manual4
 States 282

 States: Defining Values and Controls 286

 Steady-State Analysis 287

 Steady-State Analysis Method 292

 Stop and Exit Flags 295

 Steady-State Analysis Method 292

 Switch States 305

 Temporary Settings File 313

 Termination Commands 318

 Steady-State Analysis Method 292

 TIME - Testing on the Value of Time 321

 Transfer Function Analysis 322

 Transfer Function Analysis Methods 326

 Transfer Function Troubleshooting 329

 Transfer Function of Sampled Data Systems 334

 User-Defined Names 341

 References 345

5Chapter 1: Reference Manual Topics
Overview
Overview
This manual contains reference material that relates to the Easy5 Graphical User Interface (GUI), the Model
Builder, and the analysis programs. This is a companion document to the Easy5 User Guide. The user guide
contains tutorials and examples on how to use Easy5, whereas this document provides the user with
additional reference material.

Easy5 topics in this manual are listed alphabetically for ease-of-use.

Accelerator Keys
Accelerators are typically keystroke combinations involving the “Ctrl” (control) key plus a character key or a
function key that invoke a menu or menu item even when the menu is not displayed. Easy5 menus have
accelerators and mnemonics associated with them. Mnemonics are keyboard equivalents that enable the user
to access menus (and menu items) without having to use the mouse.

The mnemonics are indicated in the respective Easy5 menus. The accelerator and function keys are
summarized below:

Table 1-1 Accelerator and Function Keys

Key(s) Function

Ctrl+A Add Component

Ctrl+B Build Executable Model

Ctrl+Shift+C Display C Component Source File

Ctrl+E View Entire Schematic

Ctrl+F Model Explorer

Ctrl+Shift+F Display Executable Source File

Ctrl+C Copy Selection

Ctrl+Shift+L Display Analysis Output Listing

Ctrl+Shift+A Display Analysis Log

Ctrl+Shift+B Display Build Log

Ctrl+M Move selected group (drag and drop)

Ctrl+N File>New

Ctrl+O File>Open

Ctrl+P Print Current Schematic

Ctrl+Shift+P Plot Current Analysis Results

Ctrl+S Save Model

Ctrl+C Copy Selection

Ctrl+V Paste

Ctrl+- Zoom Out

Ctrl++ Zoom In

Reference Manual
Adding Components

6

Adding Components
There are two ways of adding components to a schematic:

 Using the Add Components window to select a component from a list of libraries, groups, and
components.

 By adding a component directly by referencing its name.

These two methods are described in the following sections. See also "Components".

Add Components Window
The dockable Add Components window lets you view and access a list of all libraries and components.
Generally this window remains open until all model components have been added.

This window is divided into three scrollable areas: the type of library, the library group, and the components.
The top windowpane lists the available libraries. The libraries listed in your window will depend on whether
you are licensed to use a particular library.

Libraries contain components for a specific application. For example, in Figure 1, the Hydraulics (hc) library
has been selected.

Some libraries contain a large number of components. To facilitate the management of these components,
the libraries are further divided into groups. Groups within a selected library are listed in the second window
pane. For Figure 1, the selected group is Pump/Motor Accessories.

<Space> View Refresh

F6 Monitor Simulation

F7 Open Simulation Analysis Form

F8 Open Steady State Analysis Form

F9 Open Linear Model Generation Analysis Form

Ctrl+Click-Right Go to Connection End

Table 1-1 Accelerator and Function Keys (continued)

Key(s) Function

7Chapter 1: Reference Manual Topics
Adding Components
Figure 1 Add Components Window

The third window pane lists each component of the selected library. You select the manner in which these
icons are displayed using the icon selection option. This option lets you select Text Only components or
Small, Medium, or Large Icons. At the bottom of the list are the user code buttons for [Fortran] and [C]
components. The code components are always listed because they do not belong to a specific library.

Reference Manual
Adding Components

8

Whenever you select a library and group, all the window panes are updated with information for that
particular library. When you select a component from the Components window pane, that component’s
library/name is automatically written into the “Add Component” input dialog at the bottom of the window.
This identifies it as the next component to be added to the schematic block diagram.

For example, if the Ripple Generator component is selected from the hc library, the component name RG is
added to the text box.

A component name can have from two to four alphanumeric characters. The first two characters are taken
from the component name given by the library. Two additional characters are used to assign a unique
component name; these characters must be alphanumeric. If this is the first component being added to your
model, Easy5 will name the component with those two characters only, such as RG. If a second RG
component is to your model, Easy5 would automatically add an identifier to the component, such as RG2.

You can edit the assigned component qualifier by selecting and highlighting the component name in the Add
Component text box. For example, if Easy5 automatically assigns the AC component to be named AC2, you
may edit the name and change it to ACXX, or any other two alphanumeric characters, to provide a unique
component name.

If the cursor is moved back into the Add Components window before releasing the mouse button and
dropping the component into the schematic, the "add" function is deactivated, and that component is not
added. You can then choose another component by selecting it’s icon again. Press Esc to deselect the
component.

With the Add Components window open, it is possible to quickly add many components to your model.
When you have finished using the Add Components window, close the window by selecting the [Close]
pushbutton.

Online Component Information
Online documentation can be obtained for any component. To obtain information about a component, first
select the component, then select the [Info] button. An “Information” page opens describing the
component’s inputs/outputs, equations and other pertinent information. The info page can be one of four
data formats: internal rich-text, HTML, PDF or Easy5 format.

To automatically display Info pages, select the “Auto-Info” radio button. This automatically displays the info
page for any component you select from the Add window. This feature allows you to view many Info pages
without having to select the Info button for each component. Before adding components, turn off the Auto-
Info radio button.

Note: You can only add components to the model from (licensed) libraries for which you have
checked out the appropriate build license feature.

Note: Components do not necessarily have Info pages. Info pages are created by the library
developer, and if not developed, the Info page will not appear when requested.

9Chapter 1: Reference Manual Topics
Adding Components
Adding Components to the Schematic
1. Select the component with the left mouse button.

As the mouse is moved, the cursor changes shape. It becomes a square with the component’s name
inscribed.

2. Move the cursor to the location where the component is to be added

3. Drop it into place with a CLICK-L.

Figure 2 Steps to Add a Component

One advantage of using the icon-based Add Components menu with the Gas Dynamics Library (gd) or the
Thermal Hydraulic Library (hc), is that you can quickly determine whether a specific component can be
connected to your model, that is whether it is a resistive or storage port.

Reference Manual
Adding Components

10
Example:
Using the icon-based Add Components menu with the Thermal Hydraulic Library (hc), you can determine
if a component will connect to the current model by viewing the inlets, and using the one you need, be it a
resistive or storage inlet.

Figure 3 Icon-based Add Window

Add Components by Name Reference
You can also add components to the schematic pad by entering the component’s two character name into the
input data field at the bottom of the Add Window.

Use of this method assumes familiarity with the library and component names, since some libraries may have
a component that has the same name as another component from a different library.

11Chapter 1: Reference Manual Topics
Analyses
For example, the Integrator component in the gp library and the Ram Air Inlet component in the ec library
are both named IN. To specify which component to add you must enter the library name, a forward slash
(“/”), then the component name. The component name entered into this input dialog is not case sensitive.
For example, you can either enter ec/IN or EC/in. Once entered, the Add Menu automatically updates the
selected library and the Add Component text field.

Adding a Code Component
Both Fortran and C code can be added to a model using the special User Code components as follows:

 Select the [Fortran] User Code button in the Add Components window to add a Fortran User
Code component.

 Select the [C] User Code button in the Add Components window to add a C User Code
component.

The component qualifier can be specified before adding the component to the model, in the same manner
as any other library component. Easy5 will ensure that any component added to your model has a unique
component name.

Analyses
The Easy5 analysis program provides you with the capability to perform a set of linear and nonlinear analyses
on the same executable model. The following sections briefly describe these analyses and their features. For
more information on these topics, refer to the analysis by name in this reference manual.

Nonlinear Analyses
Nonlinear analyses options include the capability to perform simulation and steady-state analyses on your
system model. These analyses, listed below, are described in detail in this manual.

 "Steady-State Analysis"

Simulation provides a time history of the dynamic behavior of your system model. The Steady-State analysis
locates values for model states that cause system rates (state derivatives) to equal zero. This is also referred to
as the equilibrium condition.

Note: If you wish to add a component from a library other than the “gp” library, and the
component name is the same as one from the “gp” library, then you must specify the name
of the library. If you do not, Easy5 will add the component from the currently selected
library.

Note: All analyses require checkout of an Easy5 Analysis license feature.

Reference Manual
Analysis Data Form

12
Linear Analyses
Easy5 generates a linear approximation of a nonlinear model, and uses the approximation for linear analyses.
The linear analyses provide insight into the stability and performance of the nonlinear system at various
operating points. The advantage of using linear analyses is that model behavior can be predicted relatively
quickly.

Easy5 provides a variety of linear analysis tools. These analyses, listed below, are described in detail in this
manual.

 "Transfer Function Analysis"

Transfer Function analysis permits you to calculate the poles, zeros, leading coefficient, and
frequency response between any two points in your system model.

 "Root Locus Analysis"

Root Locus analysis provides you with the capability to determine the locus of the system model
eigenvalues as a function of any system variable.

 "Eigenvalue Sensitivity Analysis"

Eigenvalue Sensitivity analysis measures the sensitivity of system eigenvalues to changes in a user
specified system parameter.

 "Stability Margins Analysis"

Stability Margins analysis calculates maximum and minimum values for user specified parameters
which maintain system stability.

 "Linear Model Generation Analysis"

The basic Linear Model Generation analysis includes the following:

• Jacobian matrix calculation

• Eigenvalues for the Jacobian

The Linear Model Generation analysis can also be used to calculate a complete linear model of the form:

=Ax + Bu

y =Cx + Du

This form of the linear model is generated when you specify an input vector u and an output vector y before
the analysis is executed. This analysis also calculates the eigenvectors of the linear model in the form of a
model matrix, which relate the modes of the model to model states. If you have a sampled data model, a
discrete form of the linear model is generated.

Analysis Data Form
All Easy5 analyses are set up and executed using analysis data forms.

A typical analysis data form is shown in Figure 4. The data fields and options in these forms vary depending
on the type of analysis requested.

x·

13Chapter 1: Reference Manual Topics
Analysis Data Form
Figure 4 Typical Analysis Data Form

Analysis Data Form Header
All analysis data forms contain a header appearing at the top of the data form. The header is a one line
description of the data form, made up of two parts:

Reference Manual
Analysis Data Form

14
1. The level and title of the model opened, such as Top Level - blade_pitch_4, shown in Figure 5 under
submodel.

2. The analysis type, such as Simulation, Steady State, Linear Model, Transfer Function, Root Locus,
and so on as shown in Figure 5.

Each analysis file is given a default name corresponding to the type of analysis. For example, by default, the
simulation analysis data form name is: simulation. This name may be changed by the user, as described in the
next section.

Figure 5 Analysis Data Form Options

Analysis Data Form

Analysis Settings File
All analysis data forms are given a standard filename. Every time you run a new analysis and change the
analysis data form, the previous data is overwritten and lost. However, you can create and save multiple
analyses by creating new analysis files.

15Chapter 1: Reference Manual Topics
Auxiliary Input File
Figure 5 shows an example of a copied analysis (simulation_copy) and a new analysis (simulation1) in addition
to the original analysis settings file (simulation).

Figure 6 Analysis Settings Files Options

To save the current analysis data form, select the Execute button (green arrow button), and press Enter. To
create a new analysis, select the New icon as shown in Figure 6; the new analysis is automiatically incremented
by 1. To copy the current analysis, press the Copy icon as shown in Figure 6 and press Enter. The default name
automatically add a suffix of _copy to the original file name. This new analysis is added to the list of analysis
files. Multiple analysis files can be created in this manner and saved in a database.

Settings files can be manipulated by using the scroll button to view the files, and then selecting the file and
the desired action of either delete, copy, or rename.

Temporary Settings File
The Temporary Settings File is an external data table containing a data base of component input parameters
and state values. It is used to temporarily modify the data defined in the components’ data table, and to apply
this temporary modification to any analysis.

This option is used to create, copy, rename and delete Temporary Settings files. See the main topic "Temporary
Settings File" for information on how to setup and use this option.

Auxiliary Input File
The Auxiliary Input File gives you an alternate means of entering data and analysis commands. It is a separate
file that you create using standard Easy5 analysis “command line” commands. These files are commonly used
to input large sets of data, such as matrices and tables. This menu option is used to create, copy, rename and
delete Auxiliary Input files. See "Auxiliary Input File" for information on how to setup and use this option.

Analysis Title
You can change the analysis title by selecting the Title data field and entering a different title. The information
in the “Title” field will appear at the top of the analysis output listing file that is created when you execute
the next analysis. This title will also appear in any plots produced during the analysis. Easy5 automatically

Note: The analysis file name defined by the user is also used in the naming of the analysis output
file (the “ezapl” file). The naming convention of the analysis output file is as follows:
<modelname>.<name>.ezapl.

Reference Manual
Auxiliary Input File

16
defaults the analysis title to whatever you entered in the model description line at the top of the main Easy5
schematic window.

Time of the Analysis
You define the time at which the analysis is executed with the “Time” value in the analysis data form. The
default value of zero is usually appropriate. However, if you have time dependent functions in your model
(e.g., table lookups as a function of time) and you wish to establish an equilibrium point at a time value other
than zero, you should set this value appropriately. To set the “Time” value, select the data field following
“Time =”, and type in a new value.

Initial Operating Point
An operating point that had been previously generated can be restored to perform the analysis at this
operating point. For example, a previously generated steady-state operating point might be used as a starting
operating point when performing a simulation.

This is done by selecting the “Initial Operating Point” input to brings up a menu that displays all available
operating point files. These are files that were either created via the Options > Save Operating Point menu,
or, from changing the default to Yes in the Save Final Operating Point? value in the analysis form. Further
information on saving and restoring operating points is given in "States: Defining Values and Controls".

17Chapter 1: Reference Manual Topics
Auxiliary Input File
Model Explorer “Pickable” Fields
Text fields that cannot be "picked" are grayed out in the Model Explorer window as shown Figure 7. Such
model names are inappropriate for the filter used.

Figure 7 Model Explorer Window

A Model Explorer window is automatically opened from an analysis form by clicking on the elipsis(“...”) of
the data value that you want to enter. This puts you into “pick mode”, which allows you to simply select the
appropriate model input/output name in the Model Explorer window that value is automatically entered into
the data analysis form. When in “pick mode”, Easy5 automatically filters the model explorer view appropriate
to the selection.

You can navigate your model using the Model Explorer “view” of your model, or the schematic itself -- both
windows will track each other. However, selection is done using the model explorer window.

You can also enter a model name by selecting a component from your model schematic, and selecting the
appropriate input/output name from the corresponding list. Once selected from the list, the name is

Reference Manual
Auxiliary Input File

18
automatically inserted into the text field. Both these methods are often faster and more accurate than
manually typing in names.

Auxiliary Input File
Auxiliary input files give you an alternate means of entering Easy5 data and analysis commands. The auxiliary
input file is a separate file that you create using standard Easy5 analysis commands (see Ap. A: Summary of
Analysis Commands).

Auxiliary input files are most commonly used to input large sets of data, such as matrices and tabular data.
During the execution of an analysis, Easy5 reads in data from the auxiliary input file, and uses this data to
override the existing data defined in the Component Data Tables.

See Also:"Auxiliary Input File Data Format"

Ap. A: Summary of Analysis Commands

Creating an Auxiliary Input File
To create an auxiliary input file, select File > Auxiliary Input File > New to open an input dialog. The
model_name is automatically inserted into the data input field. The format for an auxiliary input file is:

<modelname>.<name> or <name>

or as a label in an existing file as

<modelname>.<name> $<label> or <name>$<label>

All auxiliary input files are automatically saved with a suffix “ezax”. Therefore, the auxiliary input file is saved
in your directory as:

 <modelname>.<name>.ezax

After entering a file name, select OK; the Easy5 Text Editor window opens to allow you to enter and edit
Easy5 analysis commands. An example of an auxiliary input file is shown in Figure 8. See “Steady-State Analysis
Method” for more information on the Easy5 Text Editor.

Note: The inclusion of a modelname as part of the auxiliary file name is optional. However, using a
modelname makes it easier to identify those auxiliary input files associated with a specific
model.

19Chapter 1: Reference Manual Topics
Auxiliary Input File
Figure 8 Example of an Auxiliary Input File

This auxiliary input file defines scalar data, vector data, and a table. It also is used to setup state initial
conditions and error controls. Information on how to enter data into this file is given in "Auxiliary Input File Data
Format".

This file is linked to the analysis data form in the same manner as the temporary settings file is linked.

Select File >Auxiliary Input File from the main menu to open a dialog that lets you perform other tasks, such
as creating, opening, copying, renaming, or deleting an auxiliary file.

Inline Comments
Inline comments are supported as Easy5 analysis commands. Any character after an exclamation mark (“!”)
is ignored during processing, allowing you to enter “inline” comments, as shown below:

PARAMETER VALUES
GKI_IN = 1.3 ! new value added based on recent test

Using an “auxfile” To Enter Blocks of Data
A special auxiliary file (identified by environment variable "auxfile") may be created to contain labeled groups
(or blocks) of data and/or Easy5 analysis commands. The auxfile is generally used to manage large number
of data sets and/or to initialize the model parameters. For example, hundreds of different flight conditions
may be used to simulate an aircraft in different flight modes. Each flight condition may be defined by a
different altitude and Mach number, and the corresponding aerodynamic derivative data.

The entire data base can be put into a single auxfile, and each flight condition defined by a label name.

The steps for creating an auxfile and inputting labeled data sets is as follows:

1. Create an auxfile (outside Easy5) and add data and Easy5 analysis commands as needed.

PARAMETER VALUES
* Signal generator AF:
CODAF = 5,Step_input = 5,C2_AF = 0,C3_AF = 0,C4_AF = 0,C5_AF = 0
GKI_IN = 1.4 K_GF = 1,SLOPE = 0.031,MAXFLO = 1.55
* Define vector: Servo_Data(1) -> (5)
Servo_Data= 23.456, 19.55, 12.3, 9., 5.005, 2.
* SERVO VALVE DATA TABULAR DATA
TABLE, FTA_FU,21
-50,-45,-40,-35,-30,-25,-20,-15,-10,-
5,0,5,10,15,20,25,30,35,40,45,50
-1.55,-1.5,-1.38,-1.19,-1,-0.74,-0.5,-0.26,-0.12,-
0.05,0,0.05,0.12,0.26,0.5
0.74,1,1.19,1.38,1.5,1.55
INITIAL CONDITIONS,Actuator_pos = 5,Pitch_angle = 5,X1_TF = 50
ERROR CONTROLS,Actuator_pos = 0.001,Pitch_angle = 0.001
INT CONTROL,Actuator_pos = 1,Pitch_angle = 1,X1_TF = 1,Current = 1

Reference Manual
Auxiliary Input File

20
2. Define data blocks with label names. The label name should start with a “$” in column one, and the
name should not exceed ten characters (e.g. $labelname).

3. Before invoking Easy5, at a command prompt enter:

export auxfile=<auxfile_name> {Bourne shell}
setenv auxfile <auxfile_name> {C shell}
set auxfile=<auxfile_name> {Windows}

4. Run Easy5, and create an auxiliary input file to load in desired data blocks. In the auxiliary input file,
you can request one or more blocks of data, by using the following command:

AUX INPUT = $label_name

More than one block label may be requested in an auxiliary input file. When the requested label is located,
the commands that follow the label are executed until another label or end of file is reached.

In the following paragraphs, an example is used to show how an auxfile can be used to input different blocks
of data. These blocks contain data that models a servo valve as a nonlinear function using the tabular data
component “FU”. Assume that different servo valves need to be considered in the design, and that using a
single FU component, you would like to perform a trade study to analyze the effect of different servo valves.
You may create different temporary settings files, each containing a different
set of servo valve data. Or, you may create an auxfile containing a single data base with different servo valve
data.

To do this, create an ASCII text file and add the data as shown in Figure 8. This file, named servo_data,
contains three data blocks named: SERVO1, SERVO2, and SERVO3. Each block defines the tabular values
required for the table named FTA_FU01.

Specifying a Label in an Auxiliary Input File
You may also specify a label directly when entering new auxiliary input file using the following syntax:

<modelname>.<name>$<label>

or

<name>$<label>

This specifies inclusion of $<label> data from an existing auxiliary input file <modelname>.<name>.ezax or
<name>.ezax.

21Chapter 1: Reference Manual Topics
Auxiliary Input File Data Format
Figure 9 auxfile: servo_data

Before starting Easy5, the auxfile environment variable must be defined by entering the following command :

export auxfile=servo_data {Bourne shell}

set auxfile=servo_data {Windows}

Run Easy5, and create an auxiliary input file. In this example, the auxiliary input file will be named aux_servo.
This auxiliary input file will be used to load in the desired data set from the servo_data auxfile. For example,
if a simulation required the servo valve data contained in the second labeled data ($SERVO2), the auxiliary
input file (aux_servo) would contain the following line:

AUX INPUT = $SERVO2

Having created the auxiliary input file named aux_servo, you must request that the file be used in
the simulation. Just select the first data field after the “Aux. Input Files:” data field and select the aux_servo file.

Auxiliary Input File Data Format
The Auxiliary Input file is an additional file that you can access running any analysis. This file may contain
model data and/or analysis commands. When an analysis is executed, the data from this file overrides the
default data defined in the model’s components, and is only applied to the analysis. As a result, the model’s
data is not affected by the usage of an Auxiliary Input File.

* DATA FOR SERVO MODEL 1
PARAMETER VALUES

TABLE, FTA_FU01, 21

-50, -45, -40, -35, -30, -25, -20, -15, -10, -5, 0. 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

-2.32, -2.25, -2.07, -1.78, -1.25, -.74, -.5, -.26, -.12, -.05, 0., .05, .12, .26, .5, .74, 1.25,

* DATA FOR SERVO MODEL 2

PARAMETER VALUES

TABLE, FTA_FU01, 21

-50, -45, -40, -35, -30, -25, -20, -15, -10, -5, 0. 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

-3.50, -3.25, -2.50, -1.90, -1.52, -.74, -.5, -.26, -.12, -.05, 0., .05, .12, .26, .5, .74, 1.52,

* DATA FOR SERVO MODEL 3

PARAMETER VALUES

TABLE, FTA_FU01, 21

-50, -45, -40, -35, -30, -25, -20, -15, -10, -5, 0. 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

-4.32, -4.25, -3.07, -2.78, -2., -1.74, -1.0, -.26, -.12, -.05, 0., .05, .12, .26, 1.0, 1.74,

1.78, 2.07, 2.25, 2.32

1.90, 2.50, 3.25, 3.50

2., 2.78, 3.07, 4.25, 4.32

$SERVO1

$SERVO2

$SERVO3

Reference Manual
Auxiliary Input File Data Format

22
The Auxiliary Input File is generally used to input external data, usually large sets of scalars, vectors, matrices
and table data. This section describes only the command syntax used to load model data into an Auxiliary
Input File. The analysis commands that may also be input, are described in Ap. A: Summary of Analysis
Commands.

See Also:"Auxiliary Input File".

PARAMETER VALUES Command
The first line in the auxiliary input file should contain the following command:

PARAMETER VALUES

The PARAMETER VALUES command is followed by one or more parameter names, each followed by a
numeric value containing up to 20 characters, or an expression that fits on the current line. Each name and
its value are separated by one of the standard delimiters (comma, =, <Tab>, or 3 or more spaces). You use this
command to specify the values of all parameters at the beginning of an analysis and, at any point between
analyses, to modify the value of one or more model parameters.

A warning message will be printed at the beginning and the end of each Easy5 Analysis “run” if one or more
model parameters have not been initialized. A default value of .99999 is provided for all parameters not
specified. Parameters corresponding to certain standard components may default to other, more appropriate
values, as noted in their component description. For example, the saturation limits on the (soft) limited
integrator component, IT, will default to +/- 1036. Special default values such as these are used only if you do
not change the parameters from the standard default value of .99999, and if they have special initialization
code in the particular component.

The following example shows the use of the PARAMETER VALUES command:

PARAMETER VALUES
MASS = 18000.95 C1_MA3 = 1.0E6,C2_MA3 = .0059
COMLEV = 25,MAXLEV = 30.7 MINLEV = 5

Scalar Parameter Data
The above example also shows how to input scalar parameter data. Just enter the parameter name followed
by “=” and the data value. A parameter may be entered on a single line, or multiple names per line using a
delimiter to separate the different parameters. A delimiter can be: three or more spaces, a <Tab>, or a comma.

If integer values are to be input, the decimal point may be omitted (however, all parameter quantities are
stored as real Fortran variables). Exponential (or scientific) notation may also be used as shown by the 1.0E6
entry, which corresponds to 106. This notation consists of a decimal number and the letter E followed by a
positive or negative integer.

Note: The maximum auxiliary input file line width is 128 characters.

23Chapter 1: Reference Manual Topics
Auxiliary Input File Data Format
Array Parameter Data
Array parameters can be one or two dimensional arrays. The array input format must contain the array name,
the input mode, and the appropriate array elements. In the following examples, a 0 is displayed in the arrays
for undefined elements (or have no values loaded).

You can load parameter arrays following the PARAMETER VALUES command using one of several
methods.

These methods inlcude:

The examples below show the various modes for loading parameter arrays (following a PARAMETER
VALUES command).

Mode Designation

Column C (Default)

Row R

Diagonal D

Element none

Zero Z

Infinite I

Note: Modes are designated immediately after the array name is given. Therefore, arrays cannot be
assigned the names C, R, D, Z, or I; this could cause mode designations to be misinterpreted.
To guard against this, these parameter names are Easy5 reserved words. See "Reserved Words"
for a complete list of reserved words.

Reference Manual
Auxiliary Input File Data Format

24
Loading down a COLUMN

ADATA,C(1,1)1,2,3,4,5 Starts at element 1,1 and loads column one

ADATA,C(1,2)6,7,8,9,10 Starts at element 1,2 and loads column two

Loading across a ROW

BDATA,R(2,3)7,8,9,10 Starts at element 2,3 and loads row two

BDATA,R(1,2)3,6,9,10 Starts at element 1,2 and loads row one

Loading down and across a DIAGONAL

COEF,D(2,4).3,.4,.5 Starts at element 2,4 and loads

elements(2,4),(3,5) and (4,6)

Loading by ELEMENT

ADATA(1,2)= 12 ADATA(3,1)= 16 ADATA(2,4)= 21

This loads elements (1,2), (3,1) and (2,4).

ZERO the whole array

COEF,Z,R(2,2)1,2,3

ADATA

1 6 0 0

2 7 0 0

3 8 0 0

4 9 0 0

5 10 0 0

=

BDATA
0 3 6 9 10 0

0 0 7 8 9 10

0 0 0 0 0 0

=

COEF

0 0 0 0 0 0

0 0 0 0.3 0 0

0 0 0 0 0.4 0

0 0 0 0 0 0.5

=

Note: You must use "(" as the delimiter immediately following the array name when you use the
element input mode.

25Chapter 1: Reference Manual Topics
Auxiliary Input File Data Format
The zero array command, Z, may be combined with any of the other modes, e.g., zero array and then load
by row.

Set array to INFINITE, “Infinite” = 1036

COEF,I

Input by column starting at element 1,1 (Default)
VECTOR = 1,2,3,4,5

If an input mode is not specified, data will be loaded by column starting at element (1,1). This default may
be used for either "vector" (one dimensional) or "matrix" (two dimensional) arrays.

If the default mode is used for a matrix, the values are loaded in successive columns starting with column one.
In all input modes, the dimensions of the array will be checked for each input value to ensure that all input
elements are within the bounds of the array dimensions.

ADATA
0 12 0 0

0 0 0 21

16 0 0 0

=

COEF

0 0 0 0 0 0

0 1 2 3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

=

COEF

1.E36 1.E36 1.E36 1.E36 … … …⋅ 1.E36

1.E36 … …⋅ … …⋅ … …⋅ … …⋅ … …⋅ 1.E36

1.E36 … …⋅ … …⋅ … …⋅ … …⋅ … …⋅ … …⋅
… …⋅ … …⋅ … …⋅ … …⋅ … …⋅ … …⋅ … …⋅
… …⋅ … …⋅ … …⋅ … …⋅ … …⋅ … …⋅ 1.E36

1.E36 1.E36 … …⋅ … …⋅ … …⋅ … …⋅ 1.E36

·

=

VECTOR

1

2

3

4

5

=

Reference Manual
Auxiliary Input File Data Format

26
Expressions
Parameter values and initial conditions in analysis input and auxiliary input files also may be specified in
terms of an expression delimited by braces "{" and "}". Between the braces the standard delimiters (comma,
=, <Tab>, or 3 or more spaces) are ignored, and the expression is numerically evaluated during initialization.
The following are allowed in expressions:

 Parameter value names
 State names
 Any operator allowed by Python: +, - , *, /, ** and so on.
 Any function contained in the Python math module (exp, log, sin, cos and so on). Refer to the

Python math module documentation for a complete list of functions.

Here is a simple example of expressions in PARAMETER VALUES commands:

PARAMETER VALUES
MASS = {VOL * DENSITY)
MINLEV = 5 MAXLEV = {MINLEV + 32} COMLEV = {(MINLEV + MAXLEV)/2}
VECTOR = 1,2,{VECTOR(1)+VECTOR(2)},4,{VECTOR(2)*2+VECTOR(1)}

In this example, all of the variables in the expressions are Easy5 parameters that appear in the Inputs tab of a
component data table (CDT). State names could also be specified. In the expression containing MAXLEV
on the right hand side, the value of MAXLEV used is the value calculated in the previous command where it
appears of the left hand side.

Each expression, after numerical values have been substituted for the parameter or state names, is evaluated
by Python, hence the expression must be valid Python. For each successfully evaluated expression, the
numerical value will appear in the analysis output listing (.ezapl):

COMMAND -----> PARAMETER VALUES
COMMAND -----> TC_LA4 = 0.6623,{TC_LA2(2)*2*0.5},{asin(sin(TC_LA2(3)))}
EXPRESSION --> TC_LA2(2)*2*0.5 = 0.66206768824626
EXPRESSION --> asin(sin(TC_LA2(3))) = 0.66230000000000

If there is an error in evaluating the Python expression then that will also appear in the analysis output listing.

If your model contains parameter or state names that overload Python math module function names, then
the Easy5 names will take precedence. For example, if exp is the name of an Easy5 input, but you need to
take an exponential in your expression, then the results will likely not be as expected, or the evaluation of the
resulting Python expression will result in an error.

Finally, please note that, in general, auxiliary input files have more capability than analysis conditions
specified in GUI objects. That also applies here: expressions in auxiliary input files have more power and
flexibility than expressions entered as CDT Input values in the Easy5 schematic. Schematic expressions do
not allow for the inclusion of state names, and cannot be entered as initial conditions in the States tab.

Tabular Data
To load tabular data required by the system model, you use the following command:

TABLE

27Chapter 1: Reference Manual Topics
Auxiliary Input File Data Format
When you build your model, you specify all tables that require data to be loaded. These tables can have from
one to nine independent variables. All data can be entered in a free field format.

The data items, which can each contain up to 20 characters, are separated by one or more standard delimiters.
The data items required for each table are placed in one of the formats described below.

Arbitrarily Spaced Data
For arbitrarily spaced, independent variable tables, the table data format is as shown below.

The format for an nth-order independent variable table is:

TABLE, table_name, N1, N2, N3, ... , Nn
Nn values of nth independent variable table data
...
...
N2 values of 2nd independent variable table data
N1 values of 1st independent variable table data
Dependent variable table data (N1 x N2 x ... Nn values)

The total number, Ta of data values required is given by:

The dependent variable table values are ordered by varying the first independent variable fastest, then
scanning the second independent variable next fastest, then scanning the third independent variable next
slowest and so on, with the nth independent variable being varied slowest.

For example, the dependent values of a three dimensional table with two values for each independent variable
x,y, and z would be loaded in the following order:

f(x1,y1,z1), f(x2,y1,z1), f(x1,y2,z1), f(x2,y2,z1)

f(x1,y1,z2), f(x2,y1,z2), f(x1,y2,z2), f(x2,y2,z2)

A copy of all tabular input data is printed both as it was entered and in a formatted representation only if you
have entered the PRINTBACK TABLES command.

The following example shows the data for a one and a two independent variable table printed back.

Note: The information TABLE, table_name, N1, N2, N3, ... , Nn must be placed on a single line.
For each of the other lines, the information may be placed on as many lines as required.

Line1 PRINTBACK TABLES

Line2 TABLE, TAB_ONE, 10

Line3 1,2,3,4,5,6,7,8,9,10 (First independent variable table)

Line4 11,12,13,14,15,16,17,18,19,110 (Dependent variable table)

Ta max 3 n 1+,() Ni Ni

i 1=

n

∏+

i 1=

n

+=

Reference Manual
Auxiliary Input File Data Format

28
The printout of these tables would be:
TABLE TAB_ONE

TABLE OF INDEPENDENT VARIABLE NO. 1
1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.00

DEPENDENT VARIABLE TABLE
11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 110.00

TABLE TAB_TWO
TABLE OF INDEPENDENT VARIABLE NO. 2
10.30 20.40 30.50
TABLE OF INDEPENDENT VARIABLE NO. 1
1.000 2.000 3.000 4.000 5.000
DEPENDENT VARIABLE TABLE
11.00 12.00 13.00 14.00 15.00
21.00 22.00 23.00 24.00 25.00
31.00 32.00 33.00 34.00 35.00

Fixed Spaced Data
Because a fixed spaced table has all values of the independent variable at fixed increments, storage
requirements are less than an arbitrarily spaced table.

For fixed spaced independent variable tables, you need only give the initial value and the spacing increment
for each independent variable. To use this format, all of the independent variables for a given table must have
fixed spacing.

The format for an nth-order independent variable table is:

TABLE, table_name, N1, N2, ... , Nn, FIXED INCREMENT
n initial values for the independent variable table data
n increment values for the independent variable table data
Dependent variable table data (N1 x N2 x N3 x ... Nn values)

Line5 TABLE, TAB_TWO,5,3

Line6 10.3,20.4,30.5, (Second independent variable table)

Line7 1,2,3,4,5 (First independent variable table)

Line8 11,12,13,14,15 (Dependent variable table, start....)

Line9 21,22,23,24,25 (Dependent variable table, cont. ...)

Line10 21,32,33,34,35 (Dependent variable table, cont. ...)

29Chapter 1: Reference Manual Topics
“Analysis Only” Mode
The total number, Tf, of data values required on lines 2 to 4 is given by:

The dependent variable table values are ordered in the same way as arbitrarily spaced data.

Refer to Ap. A: Summary of Analysis Commands for more information on how to use the fixed spaced data feature.

Setting Tables To Zero
You can set the dependent variable of a table to zero. This allows you to simplify a model by removing the
effects of a table or providing a default value of zero when tabular data is not available for a model still in
development. To set a table to zero, the command format is:

TABLE, table_name = ZERO

This command causes the table: table_name to be loaded with independent and dependent variable
information that will result in zero as an output for all independent variable values. To remove the ZERO
option, you must load new table data.

The OMIT TABLE PRINTBACK Command
To suppress the printback of table data, use the following command:

OMIT TABLE PRINTBACK

By default, this command is always set. This command is often used on "production runs" or models with
large amounts of constant tabular data.

The PRINTBACK TABLES Command
If you wish to verify table data, you issue the following command to restore the table printback feature:

PRINTBACK TABLES

“Analysis Only” Mode
The Analysis license feature enables access to Easy5 analyses. It can be used to provide lower cost access to
Easy5 customers that do not need to create component libraries or build their own models, but rather, that
just want to apply Easy5’s analysis set to one or more Easy5 models created by another user.

The Analysis license feature allows you to perform analyses on a given model. An “Analysis Only” mode of
operation is defined by the situation whenever you have checked out an Analysis license feature, but have no

Note: The information TABLE, table_name, N1, N2, ... , Nn, FIXED INCREMENT must be
placed on a single line. For each of the other lines, the information may be placed on as many
lines as required.

Tf 2n Ni

i 1=

n

∏+=

Reference Manual
“Analysis Only” Mode

30
Model Building (or Library Developer) feature checked out. Please see Ap. A: License Management in the Easy5 User
Guide for information on Easy5 license features.

Operations Allowed
When in “Analysis Only” mode, you are able to do the following:

 Open any existing model
 Change parameter and IC values
 Run any Easy5 analysis (assuming other library-specific license features are also checked out, if

needed)
 Create and manage temporary setting and auxiliary input files.
 Create and manage analysis settings files
 Save new versions of a model (without affecting model topology)
 Save/restore initial conditions
 Use the Easy5 Plotter to display your results

Disabled Functionality
While in “Analysis Only” mode, you cannot:

 Create a new model
 Save an existing model under a new name using the "Save As..." option
 Perform any edit operations to a model, such as:

• Copy individual or groups of components

• Copy groups of components from other models

• Add or delete components

• Change names of any model quantities

• Change any configuration parameter for any component

• Change names of any components

31Chapter 1: Reference Manual Topics
“Analysis Only” Mode
 Access most Library menu items
 Access the Build Menu
 Access the Edit Menu
 Change table dimensions
 Edit User-Code (FORTRAN, C, or Extension) component
 View the executable source files
 Update a model with respect to its libraries

Creating a “Locked Configuration” Model for Distribution Purposes
By default, any Easy5 model can be opened in “Analysis Only” mode. However, if a model/library update (a
model/library configuration resynchronization) is required, you will be unable to open that model, unless you
(or the author) performs a Model Update -- requiring checkout of a Model Build license feature. In addition,
models provided for “Analysis Only” mode distribution will only function for the platform created by the
author. This is because the model is an executable file, which can only be run in a given platform/compiler
environment.

To prevent model/update issues from occuring, you may want to more strictly enforce the configuration of a
given model, in particular if it is to be used in an Analysis Only mode of operation.

Thus, if you want to distribute a "locked down" model configuration, you can do that using the following
procedure:

1. Create a separate subdirectory for the model.

2. Include copies of any library dictionaries and object libraries in the local directory that you want
"locked-in" for this model, overriding what normally gets used by Easy5. You can even include copies
of Easy5's own (GP, IS, etc.) libraries, if you want to lock these down also. Recall that any
model/library configuration difference would prevent the end-user from using a particular model in
“Analysis Only” mode.

3. If any libraries have Info Pages (in the form of either .html, or .pdf files), these should be included in
a subdirectory named xx/info (where xx=2-character library tag). Similarly, for alternate icons a
directory named xx/icons would need to be included.

4. Build the model executable (for all platforms to be executed on).

5. Delete any generated source files in the directory, if desired.

6. Delete any unwanted listing or other output files (.ezlgl, .ezmgl, .ezapl, .log) from the directory.

Reference Manual
Background Processes

32
7. Confirm that all required files are included in the model directory including:

In addition, you probably will want to include files for running analyses, operating point files, and
temporary settings files.

8. It is always a good idea to include a <modelname>.info.html (.pdf, or .txt) file explaining what the
model does and how it should be run. A provision for Model Info files named
<submodelname>.info.html (.pdf, or .txt) is also provided, allowing Model Info files for each
individual Submodel to be maintained and displayed (from the given submodel only). Please see
"Modeling Fundamentals" for more details.

9. You can use WinZip (or a similar archiving tool) to compress the entire directory for distribution
purposes. This makes it easy to transfer the whole set of files in a single archive. Password encryption
can also be used at this step for security purposes.

Using a Locked Configuration Easy5 Model
Then, to use a locked configuration model, the (“Analysis Only” mode) Easy5 user should:

1. If appropriate, decompress the archived folder with all files as needed (using WinZip, for example).

2. Invoke Easy5 (and if needed, checkout the "Analysis" license feature).

3. Open the model in the given folder (one model per folder).

4. With a Analysis license feature checked out, the user can invoke Easy5 and run analyses on this model
with all (desired) libraries and the model essentially pre-configured. You will also need to checkout
any application library-specific runtime license features used in the model. The user will be unable to
view generated source code or modify the model topology. Because a model executable has already
been built, this installation of Easy5 will not require a compiler.

Background Processes
Easy5 normally uses so-called "background" processes to perform analyses and Build tasks, such as creating an
executable, and updating a component library.

In some cases, several background processes may run simultaneously for a single analysis. This is because there
are actually several background programs used to facilitate the many background operations being performed
for the action in progress.

While Easy5 normally takes care of the management of these processes, it is possible that due to a system
crash, or other unanticipated problem, one or more of these processes may continue to run in the
background, often without actually performing any useful function.

<modelname>.<v>.ezmf Easy5 modelfile

<modelname>.exe model executable (for a given platform)

<xx>.ezdc, <xx>.ezdf local dictionary files for each library <xx>

<xx>.a, or <xx>.lib local object code libraries for each library <xx>

33Chapter 1: Reference Manual Topics
Background Processes
Such processes, referred to as "stale" processes, continue to run even though you directed them to terminate
using a Stop Analysis command, or other means. If you do not terminate stale background processes, they
can sometimes run indefinitely and can potentially interfere with legitimate Easy5 background operations,
such as analyses, as well as system hardware resources (for example. memory, CPU).

Since Easy5 cannot safely differentiate between stale and legitimate background processes, you can select
View > Easy5 Background Processes from the main menu to identify and eliminate stale processes as shown
below in Figure 10.

Figure 10 Current Easy5 Background Processes Window

This window displays several columns of data designed to help you more readily identify stale processes. The
first column is the Process ID, the second the (translated) process name, then the name of the associated
Easy5 model, followed by the start time (or date), and the total CPU time expended.

Please note that some of the processes listed in this dialog window may actually not be stale; they could be
legitimate background processes that are still running. While only processes identified with your <username>
are listed in the process list, it is important that you verify that no other user is inadvertently running Easy5
on your computer with your username while you are checking these processes.

Also, please note that it is possible to launch Easy5 analysis jobs and then exit the graphical user-interface.
These jobs will continue to run as background processes until they are manually terminated, or reach their
conclusion normally. Only background processes launched from the Easy5 graphical user interface are shown
in the Background Processes Window list; such background jobs are all managed using a Background
program manager as described in the table below.

Reference Manual
C Component

34
Thus, all Easy5 "batch" mode jobs (see Ap. D: Batch Mode Commands) are excluded from this list.

If you know that one or more processes in the list are stale, you can terminate them. However, please note
that any process terminated in this way also lose any output data that was written.

To use the dialog to terminate one or more processes, select one or more (stale) processes from the dialog list,
and choose Terminate. After a confirmation dialog, Easy5 terminates the selected process, and reopens the
Background Processes window. Please note that the amount of time required to remove a process from the
process list is system-dependent, so you may wish to close out the window and refresh it manually in some
instances.

C Component
See also: "Compiling External Code"

"Fortran Component"
"Linking External Code"
User Guide, Chapter 5 - Code Components

C code is added to a model using the C code component. This component is accessed from the Add Window
by selecting the C button at the bottom of the window, then dropping the component onto the schematic.
It is named CC<xx>, where, <xx> is the component qualifier as shown in the C Code Component Editor in
Figure 11.

Table 1-2 Description of Background Processes in Dialog List

Process Name Description

Matrix Algebra Tool Program representing the Easy5 Matrix Algebra Tool

Interactive simulation Program displaying active Interactive Simulation widgets running in an Easy5
simulation

Background program
manager

Intermediate program ("remote_exec") used to communicate between
background jobs and the Easy5 graphical user interface.

Model generator Program used to construct an executable model, and update library
components.

Editor Easy5 text file editor used for text file display or editing

Docmod utility Program used to document your model in either text or HTML modes

Icon Editor Program used to edit and/or display Easy5 icon files.

Plotter Program used to read, display, and customize Easy5 plot data files

compile command Process used to compile model file

link command Process used to link your model object file with Easy5

executable shell Intermediate shell process used for launching background operations

model executable Your Easy5 model executable (during an analysis)

35Chapter 1: Reference Manual Topics
C Component
Figure 11 C Code Component Data Table

Adding C Code
C code is entered into to the C code editor. The coding requirements are easy to understand because Easy5
takes care of the code structure, compilation and linking. The following rules apply when adding C code to
an Easy5 C Code component:

1. The C code entered is only the main body of the C code. Easy5 takes the C code and writes it to an
external C code file as a separate function, with all the appropriate headers and structure, and
automatically compiles this and links the code with the Easy5 executable model. All C components
from a given model are written to a single file named <modelname>_c.c.

2. All Easy5 scalar variables (names displayed in the Component Data Table) must be defined in the C
code as pointers. To do so, the names must be preceded with an “ * ”, such as: *current_ma. This only
applies to all Easy5 scalar variables used in the C code.

3. All Easy5 array variables (names displayed in the Component Data Table that are arrays, also called
vectors) are already referenced as double pointers. The names are entered as is, without referencing as
a pointer.

The arrays are listed in the data table using the Fortran convention, which indexes the array from 1
to “n”. However, when using the array in the C code, the C code convention is used, which indexes
the array from 0 to “n”-1, where n is the array size.

For two-dimensional arrays, row and colums are reversed between Easy5 and C code convention. This
means that an Easy5 array XA(n,m) is referenced as XA[m-1][n-1] in the C code body.

Reference Manual
C Component

36
4. Variables not added to the Component Data Table are “local variables”, which take on the proper C
code convention.

5. Global variables (reserved words) and functions from Easy5 can be accessed from C Components, and
used in an analogous way as in Fortran Components.

6. #-defines and other non-executable code or C declarations can be added to a C component by using
the DECLARATION keyword, and adding the appropriate C code. Such code will be sorted to the
bottom of the non-executable portion of the resulting C source code file.

In general, such variables are defined by all UPPER case variables such as those shown in the table below.
These variables and functions are defined in the C code file, <model>_c.c.

The following is a simple example of a C code component which contains both scalars and arrays, states, and
local variables. The C code component models the dynamics of three mass spring dampers.

Example C Code Component
The C code component data inputs are:

 Force_external {scalar input, used to connect the external force}

 mass[3] {array sized 3, to define the mass of three bodies}

 damping_coeff {scalar parameter constant, the same damping coefficient
is used on the 3 masses; it is initialized to 0.7 if needed using a test
on INCALL}

Table 1-3 Global Variables and Functions

Variable/Function Definition

ITINC ITINC flag

IEZSWS IEZSWS flag

INCALL initial call flag

ICCALC Calc XIC flag

TIME the value of TIME

IDELAY IDelay flag

EZTBL1 1 D table-lookup

EZTBL2 2 D table-lookup

EZTBL3 3 D table-lookup

EZ_IS_CONNECTED(s) to verify if an input name “s” is connected

INST analysis type flag

ISTOP termination flag

EZ5TOAPL(s) to write string “s” to the EZAPL file

37Chapter 1: Reference Manual Topics
C Component
 k_spring_constant[3] {array sized 3, to define the spring constant for
each spring}

 k_arr[4][3] {a constant array sized in Easy5 as (3,4) -- used for
example purposes only}

The two states are:

 position[3] {array sized 3, defines the position of each of the 3
masses}

 rate[3] {array sized 3, defines the velocity of each of the 3 masses}

The output variables are:

 acceleration[3] {array sized 3, defines the acceleration of each mass}

 xarr[4][3] {an output array defined in Easy5 as (3,4) for example
purposes)

In addition to the Easy5 variables, local variables used in the code are:

 Force_spring {scalar, defines the spring force}

 Force_damper {scalar, defines the damper force}

 Force_on_mass {scalar, defines the force on the masses}

The C code body is as follows:

line# Code:

 1 double Force_on_mass, Force_spring, Force_damper;

 2 int i;

 3 if (INCALL == 2 && *damping_coeff == (double)0.99999)

 4 *damping_coeff = 0.7;

 4 for (i=0; i<3; i++) {

 5 Force_spring= k_spring_constant[i] * position[i];

 6 Force_damper= *damping_coeff * rate[i];

 7 Force_on_mass= *Force_external-Force_spring-Force_damper;

 8 acceleration[i]= Force_on_mass/mass[i];

 9 DERIVATIVE OF, rate[i]= acceleration[i];

 10 DERIVATIVE OF, position[i]= rate[i];

 11 for (j=0; j<4; j++)

 12 xarr[j][i]= k_arr[j][i]*acceleration[i];

 13 }

Reference Manual
C Component

38
Examine the code. The first and second lines define the local variables, variables not defined in the Easy5 data
table. On lines 3 and 11, the “for” loop indexes use the C standard, starting at 0, not 1.

Please note that the Easy5 names that display in the component data table use the FORTRAN convention
which starts at index 1, whereas in the C code, the C convention is used, which starts at 0. On line 5, because
k_spring_constant is an Easy5 array name it does not need to be referenced as a pointer.

On line 6, damping_coeff is an Easy5 scalar data type and therefore is referenced as a pointer by preceding
the name with an *. The final lines use the Easy5 command “DERIVATIVE OF,” to integrate the rates and
calculate the states.

Adding C Declarations
Declarations can be easily added to your C code by using the Easy5 DECLARATIONS command, for
example, to include C system include file stdio.h:

DECLARATIONS, #include <stdio.h>

Such declarations will get placed near the top of the C source file that is generated by Easy5.

C Code Files and Structure
The process of creating, compiling and linking C code with Easy5 is shown in Figure 12 below.

Figure 12 C Code Files, Compilation and Linking

Easy5 is a code generator; the GUI-based model is converted to Fortran source code, and the source file is
compiled and linked with Easy5 object files. The underlying source code is always a Fortran source file,
named <model>.f.

As a result, when you add C code to your model, the C code is not embedded in the Fortran source file as
inline code. Instead, the C code from all C code components is written to a C source code file named,
<model>_c.c. This file contains a separate function for each C code component, and each function is
referenced as, EZ__CC<xx>, where, <xx> is the specific component designator.

Preceding these functions are various declarations allowing you access to most Easy5 global variables, and
several functions, such as, table look-ups. Always check these declarations when using them in your C code.

39Chapter 1: Reference Manual Topics
Code Components
An example of a C code source file containing two C functions is shown below:

void EZ___CC (double *acceleration, double *position, and so on)
 {

<c code from component CC>
 }
void EZ__CC02 (<list of variables>)
 {

<c code from component CC02>
 }

When the executable model is created, the C code source file <model>_c.c is automatically compiled and
linked with the Easy5 Fortran model code, as shown in Figure 12. The C code source file is written to the disk,
and is accessed by selecting the menu, Build > Display C Component Source File. If an error occurs during
the Fortran or C code compile, the error message is written to a file named <model>.err, and Easy5
automatically opens and displays the error file.

In the model source file <model>.f, each C code component is replaced with a call to the associated C code
function, call ez__CC<xx> , where <xx> is the component qualifier. An example of such a call in a Fortran
source file is shown below:

C COMPONENT CC02
Call ez___CC02 (acceleration,position,ez_cder_position,rate,
+ ez_cder_rate,Force_external,mass,damping_coeff,k_spring_constant)

Code Components
See also:"Fortran Component"

"C Component"
User Guide, Chapter 5 - Code Components

Both C and Fortran code is added to a model using a User Code component. Multiple code components may
be added to a model, and the language may be mixed, that is, both C and Fortran code may be added to the
same model.

There are two types of code components, a Fortran code component, and a C code component. The code
component is added to a model by selecting the “User Code” selection from the bottom of the Add Window
as shown in Figure 13. The Fortran code component is named FO<xx>, and the C code component is named
CC<xx>, where, <xx> is the component designator.

Reference Manual
Command Line Options

40
Figure 13 Code Component

Complete information about adding both C code and Fortran code is also given in the User Guide, Chapter 5 -
Code Components.

Command Line Options
There are many command-line options available to setup the Easy5 environment and run special scripts. The
options list is obtained by entering the following command at any Easy5 Command Shell window prompt:

easy5x -help

The Easy5 Command Line Options table shows a partial list of different Easy5 command line options. Your
options list may vary depending on the Easy5 version you are running. These command options are entered
from an Easy5 Command Shell, not from within Easy5. To open an Easy5 Command Shell window select the
"Open Command Shell..." File menu item.

The command is entered as:

easy5x -<option>

Note: Windows: Easy5 options can also be displayed by selecting Start > Program Files > Easy5
2021.1 > Help > Command-Line Options.

Table 1-4 Easy5 Command Line Options

Option
(case sensitive) Description

 -al mm Convert your binary component library file ‘mm’.ezdc to ASCII format. This is
used to transfer component libraries across platforms.

 -AutoUpdate <model> Convert or update an existing (v6) model

 -bl mm.ezda Convert ASCII component library file mm.ezda to Easy5 binary format.

 -B [batch command] Invoke Easy5 batch program directly.

 -B -help Displays batch help; lists batch commands and options.

-cc [-d] <CcodeFiles> The "cc" option is for C compilation. Compiles the C code source files using
the default compiler options used by Easy5. One or more file names can be
entered, and wildcards can be used. See Compiling External Code for more
information. Use the "-d" option to specify debug mode.

41Chapter 1: Reference Manual Topics
Command Line Options
 -clean [modnam] [-f] Remove unnecessary [modnam] files from current directory.

 -def Displays internal variable settings.

 -demo [options] Copies Easy5 demo models into the current directory. Options:

 nn copies only demos for library nn

 all copies all available demos into a demo tree

 -docmod <mfile> [cc]

[-html]

Displays Easy5 component data descriptions and values for every component in
the specified model.

Optionally generates data only for component cc.

The -html option generates an HTML version of the model description.

Requires a runtime model building license.

 -dp mm [cc]

[-al]

[-a]

[-l]

[-html]

Displays library component data descriptions and values for all components in
component library mm.ezdc.0

Options:

 cc all data for library component cc

 -al all data for every component in library

 -a abbreviated data (no code)

 -l only component names, descriptions

 -html all data for all components <HTML> written to mm /info
 directory (requires a runtime Library Developer license)

 -hinf all data for all component in HTML for use as Info Pages

 - dp -help displays this list

-fc [-d] <Fortran code
file(s)>

The "fc" option is for Fortran compile. Compiles the Fortran source code files
using the optimum compiler options used by Easy5. One or more file names
can be entered, and wildcard can be used.

See Compiling External Code for more information.

 -home Displays directory where Easy5 is installed.

 -hostid Displays your workstation hostid (for License Management).

Table 1-4 Easy5 Command Line Options (continued)

Option
(case sensitive) Description

Reference Manual
Command Line Options

42
 -hotline Displays phone numbers to call for Easy5 technical support.

 -help_batch Get help on using Easy5 (batch) mode.

 -help_remote Get help on using remote execution.

 -iconedit Edit icon. Opens, and saves data to file: icon_data.

 -iconedit filename Edit icon. Opens, and saves data to file: ‘filename’.

 -iconedit ll cc Edit icon. Opens icon for component ‘cc’ in library ’ll’.

Saves icon data to file: icon_data.

 -infoedit Edit an Info Page. Data saved to file: info_data.

 -infoedit filename Edit info data. Opens, and saves data to file: ‘filename’.

 -infoedit ll cc Edit info data. Opens info for component ‘cc’ in library ‘ll’. Saves info data to
file: info_data.

 -libnotes Displays where Application Library Release Notes are stored.

 -LibConvert xx Convert an existing v6 library xx to v7 format

 -license Displays info about your Easy5 license (expiration date, etc).

 -lmstat Displays out license manager status information.

 -mat Run the Easy5 Matrix Algebra Tool (MAT).

 -matD [debugger] Run the Matrix Algebra Tool (MAT) using the specified debugger.

 -mat_nogui Run the Easy5 Matrix Algebra Tool (MAT) w/o GUI.

 -mat_demo Copies demonstration MAT files to your current directory.

 -notes Displays the current Easy5 Release Notes.

 -p [rpdfile | rplfile] Runs the Easy5 plotter [auto-load ‘.ezrpd’ or ‘.ezrpl’ file].

 -plot_demo Copies demonstration plot files to your current directory.

 -run_pdemo Runs the Easy5 Plotter Demo.

 -teach [-norun] Copies all Easy5 tutorial models into your current directory. Also invokes Easy5
unless ‘-norun’ option is specified.

Ref: Easy5 User’s Guide, Chapters 5,6 & 7.

Table 1-4 Easy5 Command Line Options (continued)

Option
(case sensitive) Description

43Chapter 1: Reference Manual Topics
Compiling External Code
Option Examples
The option command is proceeded by a "-" to modify the easy5x command. For example, to display the
Release Notes, enter "-notes" at a command prompt as follows:

easy5x -notes

To generate an ASCII document of your model named test_servo, version 5, and have the components listed
in alphabetical order, enter the docmod option with the -a modifier as follows:

easy5x -docmod test_servo.5.ezmf -a > test_servo.txt

The model document will be saved in a file named test_servo.txt

Compiling External Code
See also:"Fortran Component"

"C Component"
"Linking External Code"

External code that is called or referenced in your model must be compiled outside of Easy5. It is very
important that you compile the code with compiler options that are compatible with Easy5.

The simplest method of assuring this is to use Easy5’s compile commands:

For Fortran code: easy5x -fc [-d]<source file(s)>

For C code: easy5x -cc [-d]<source file(s)>

where, <source file(s)> are the names of the Fortran or C source files, and the "-d" option is used to request
"debug" compiler options, allowing you to use a symbolic debugger with those files. The compile commands
will compile the source files using the default compiler options required by Easy5, and are used from any
Easy5 Command Shell window.

 -tutorial [-norun] Copies Easy5 ‘quick’ tutorial into your current directory. Also invokes Easy5,
unless the ‘-norun’ option is specified.

Ref: Easy5 User’s Guide, Chapter 3.

 -v [ll] Displays Easy5 version information [for library ll]

 -vars Displays the environment variables you can set to define various Easy5 options.

See “External (Environment) Variables” for more information.

 -varset Lists all defined Easy5 environment vars. and their values.

Table 1-4 Easy5 Command Line Options (continued)

Option
(case sensitive) Description

Reference Manual
Compiling External Code

44
Default Compiler Options
The table shown below indicates the standard Fortran compilation options that Easy5 normally uses when
compiling your model. These basic options are recommended when compiling your own user-defined
Fortran routines that are to be linked to Easy5. However, it is easier to use Easy5 compile commands (see
above), which automatically use the appropriate platform and compiler appropriate compile options for
compatibility with Easy5.

Obtaining Current Compiler Options
To obtain the current Easy5 default compiler options, enter the command:

easy5x -def

This command lists all internal Easy5 variables. For example, the Fortran compiler options are defined by the
environment variable named ezfflags. To get a list of only the Fortran compilation options enter:

easy5x -def | grep ezfflags

To list the Fortran compilation optimization options enter:

easy5x -def | grep ezf77opt

And, to list the Fortran compilation debug options enter:

easy5x -def | grep ezdebugf77opts

The optimization option should not be used when compiling with the debugger. To compile with the
debugger, set the ezdebug environment variable to on, or use the "-d" option. This disables all optimization.

The C default compiler options are defined by the variable named ezcflags, the C optimization options are
defined by ezcopt, and the C debug options are defined by ezdebugcopts.

Table 1-5 Easy5 Default Fortran Compilation

Platform Fortran Compilation Options

Sun Solaris f77 -c -O2 -Nl329 -Nn50000 -Ns6000 -Nx1500 -Nq4000

HP/UX f77 -c -O +ppu

IBM/AIX f77 -c -O -qextname

Windows Compaq Visual Fortran df /c /MD /fpe:0 /Oxp

Caution: The values in Easy5 Default Fortran Compilation table may not always be
up-to-date with software updates. Therefore, always confirm these options by using the
"easy5x -def" command as described below, or use the default Easy5’s
compile commands.

45Chapter 1: Reference Manual Topics
Compiling External Code
Setting Debug Compiler Options
To compile your external code with the debug compiler options turned on and the compiler optimization
turned off, set the ezdebug variable as shown below. This variable must be set before compiling using the
Easy5 Compile Command.

setenv ezdebug on {C shell}

export ezdebug=on {Korn/Bourne Shell}

set ezdebug=on {Windows}

An alternate way is to add the "-d" option to specify debug mode with Easy5’s "fc" or "-cc" compile
commands.

User Specified Compiler Options
It is possible to customize the command line that Easy5 uses to compile the Fortran source file. This can be
very useful in cases where a floating point accelerator is installed on a particular node and much of the
execution time is spent in User Code Fortran or Library components.

To change the compilation options, set the environment variable ftnopt to the compile options you need,
as shown below. This will override the Easy5 default compile options. This variable must be set before
compiling using the Easy5 compile command:

setenv ftnopt <compile options> {C shell}

export ftnopt=<compile options> {Korn/Bourne Shell}

set ftnopt=<compile options> {Windows}

Setting ftnopt will override the Easy5 default compile options.

Examples of Compiling External Code
1. To compile all Fortran or C source files in the current directory, use the wildcard “*” with the

command:

easy5x -fc -d *.f Fortran files
easy5x -cc -d *.c C files

2. To compile C code source files named trim.c, filter.c and kad.c, enter the command:

easy5x -cc trim.c filter.c kad.c

3. To compile Fortran or C source code with the debug option on, the commands are:

easy5x -fc -d *.f Fortran files
easy5x -cc -d *.c C files

4. To override the Easy5 default Fortran compile options with your options, and then compile “test.f”
using the easy5x command, the Windows command is:

set ftnopt=/c /MD Windows method for setting ftnopt
easy5x -fc test.f

Reference Manual
Compiling External Code

46
Compiling and Linking Mixed Code
This section contains a list of recommended compile and link commands that makes it easier to compile and
call external C code from a Fortran routine, and to call Fortran routines from a C function. Sample source
files are included at the end of this section to demonstrate how to call C from Fortran and Fortran from C.

C Code Considerations
There are special considerations that you must take when compiling C Code and linking it to a Fortran call.
See “Compiling External Code” for information on Easy5 command-line options used to compile C code.

These are platform specific as follows:

Windows Notes
 Note that all function names should be in UPPERCASE.
 C functions called from Fortran should be declared __stdcall (for DVF6), and __cdecl (for others).
 Extra “string length” argument added for each character argument is put immediately after the

character argument.

Linux Notes
 Add an underscore character to end of C functions called from Fortran.
 Extra “string length” argument added for each character argument is put at the end of the argument

list.

HPUX Notes
 Use the Fortran compiler option +ppu

AIX Notes
 Use the Fortran compiler option -qextname

C Code Compile/Link Commands
The following tables show a list of compile and link commands for both C and Fortran code that should be
used when calling C code from Fortran or vice versa. Note that these are general recommendations that
depend on the compiler type and version and may not apply directly to your system.

See “Compiling External Code” for information on Easy5 command-line options used to compile C code.

47Chapter 1: Reference Manual Topics
Compiling External Code
Use these recommendations more as a general guideline. For example, you may wish to add and experiment
with different compiler optimization options which are not included in this list.

Table 1-6 Windows Compaq Fortran Compiler

Compile/Link Commands

C compile cl -c /Zi -DWIN32 mixed_lang_c.c

C preprocessor FPP -DWIN32 mixed_lang_f.F mixed_lang_f_cpp.f

Fortran compile DF -c /Zi mixed_lang_f_cpp.f

Fortran link DF /Zi mixed_lang_f_main.f mixed_lang_c.obj mixed_lang_f_cpp.obj

Table 1-7 Sun Solaris Compiler

Compile/Link Commands

C compile cc -c -g mixed_lang_c.c

C preprocessor f77 -F mixed_lang_f.F

Fortran compile f77 -c -g mixed_lang_f.f

Fortran link f77 -g mixed_lang_f_main.f mixed_lang_c.o mixed_lang_f.o

Reference Manual
Compiling External Code

48
Example of Calling Fortran from C
#
include <stdio.h>

#ifdef WIN32
void __stdcall CFUNCTION (int *ival,

char *str,
int str_len,
double *dval,
double array[])

#else
void cfunction_ (int *ival,

char *str,
double *dval,
double array[],
int str_len)

#endif
{

Table 1-8 HP HPUX Compiler

Compile/Link Commands

C compile c89 -Aa -c -g mixed_lang_c.c

C preprocessor f77 -F mixed_lang_f.F

Fortran compile f77 -c -g +ppu mixed_lang_f.f

Fortran link f77 -g +ppu mixed_lang_f_main.f mixed_lang_c.o mixed_lang_f.o

Table 1-9 SGI IRIX Compiler

Compile/Link Commands

C compile and
preprocessor

cc -c -g mixed_lang_c.c

Fortran compile f77 -cpp -c -g mixed_lang_f.F

Fortran link f77 -g mixed_lang_f_main.f mixed_lang_c.o mixed_lang_f.o

Table 1-10 IBM AIX Compiler

Compile/Link Commands

C compile xlc -c -g mixed_lang_c.

C preprocessor /lib/cpp -P mixed_lang_f.F > mixed_lang_f.f

Fortran compile xlf -qextname -c -g mixed_lang_f.f

Fortran link xlf -qextname -g mixed_lang_f_main.f mixed_lang_c.o mixed_lang_f.o

49Chapter 1: Reference Manual Topics
Compiling External Code
 int i;
 int local_ival;
 double local_dval;
 double local_array[3] = { 1.23, 2.34, 3.45 };
 char buf[1024];

 printf("Hello from cfunction, Values received from
Fortran:\n");

/* print out arguments received from Fortran main program */

 printf("ival = %d\n", *ival);
 printf("dval = %lf\n", *dval);
 for(i=0; i<3; i++)
 {
 printf("array[%d] = %lf\n", i, array[i]);
 }

 strncpy(buf, str, str_len);
 buf[str_len] = (char)0;
 printf("str = %s\n", buf);

/* call Fortran subroutine from C */

 printf("cfunction calling Fortran:\n");
 local_ival = *ival;
 local_dval = *dval;
#ifdef WIN32
 i = FFUNC(&local_ival, &local_dval, buf, strlen(buf),
local_array);
#else
 i = ffunc_(&local_ival, &local_dval, buf, local_array);
#endif

/* return new values to calling (Fortran) program */
 *ival = *ival * 100;
 *dval = *dval * 100.;
 strcpy(str, "new strng");
 for(i=0; i<3; i++)
 {
 array[i] = array[i] * 100;
 }

Fortran function called from C code

#ifdef WIN32
 integer function FFUNC (ival, dval, string, array)
#else
 integer function ffunc (ival, dval, string, array)
#endif
C
 integer ival
 real*8 dval
 character*(*) string

Reference Manual
Compiling External Code

50
 real*8 array(3)

 write(6,5)
 5 format(1x,"hello from Fortran function: .")

 write(6,10)ival, dval, string
 10 format(1x,"(ffunction) Values received from c:",/,"ival = ",
 x i3,", dval = ", f10.5, ", string = ", a10)
 do 100, i = 1, 3
 write(6,20)i, array(i)
 20 format(1x,"array(",i2,") = ", f10.5)
 100 continue

 ffunc = 10
 return
 end

Example of Calling C From Fortran

 integer ival
 integer i
 real*8 dval
 real*8 array(3)
 character*10 string

 ival = 3
 dval = 1.25
 array(1) = 1.1
 array(2) = 2.2
 array(3) = 3.3
 string = 'a string'

 write(6,5)
 5 format(1x,"hello from main Fortran program: calling c
function.")

 i = cfunction(ival, string, dval, array)

 write(6,10)ival, dval, string
10 format(1x,"(main Fortran) Values returned from c:",/, "ival = ",
 x i3,", dval = ", f10.5, ", string = ", a)
 do 100, i = 1, 3
 write(6,20)i, array(i)
 20 format(1x,"array(",i2,") = ", f10.5)
 100 continue
 stop
 end

51Chapter 1: Reference Manual Topics
Components
Components
See also:"Adding Components"

“Code Components"
"Component Data Table"
"Parameters - Defining Input Values"
"States"

Users of Easy5 represent their dynamic system model with interconnected modeling blocks known as
components. Components, represented in the model as full color graphical icons, are actually mathematical
models of physical system. Four types of components are used in Easy5:

 Library components
 User-defined Library components
 User-Code components used to enter Fortran or C code
 Extension components

These four types of components may be used together in a model. This modularized component approach
to modeling is particularly well suited to very large system models characterized by hundreds of differential.
difference and algebraic equations. Components may also be dimensioned, that is, the entire component can
be made into a “vectorized” component, whereby the inputs and outputs are vectors and the underlying code
is automatically vectorized. This is reviewed in "Dimensioned Components".
A review of each type of component is given in this section. But first, the fundamental component basics is
presented.

Component Basics

Naming Convention
The Easy5 naming convention uses explicit names of up to 60 characters, separating the three parts of each
name by underscores (_), no embedded blanks, and (for ported quantities) using port names of up to 12
characters. Results of this naming convention make it easy to identify any model name in various model name
lists, the output listing.

This naming convention requires that no underscores be used except as these special name delimiters. This
requirement is enforced during library component definition. In addition, port names are limited
to only alphanumeric characters - no underscores or punctuation. The resulting default names often convey
enough mnemonic meaning lessening the need for custom, user-defined names. Nevertheless, any default
names can be overridden by simply typing over the default name with an up to 60 character user-defined
name.

Example:

A model quantity representing the temperature at exit port “Exit” of the pipe (PI) component named L7 has
a default Easy5 variable name of “Temp_Exit_PIL7”. A user could override this default name with a user-
defined name of “TempExitPipeHFA7”, and still access the default name later, at any time.

Reference Manual
Components

52
Component Inputs
There are two categories of input quantities for components. These are: regular inputs, the values for which
come from other components or are supplied by the user; and table inputs, which comprise a set of user-
defined table lookup data.

All regular inputs left unconnected are called parameters. Parameters are quantities that are constants of your
system. You must give parameters data values before the executable model is analyzed.

Component Outputs
Two types of output quantities exist for components: states and variables. States are a function of first order
differential equations (continuous states), difference equations (sample and delay states), or
switching/memory equations. Variables are algebraic functions of states and other variables.

Component Input/Output Naming Convention
Easy5 uses a default naming convention for all inputs and outputs in a model. This convention allows you to
recognize the source of any standard component input or output, and guarantees that every quantity name
in your model is unique.

Any Easy5 defined default names can changed to a user-defined name. See "User-Defined Names" for
information on how to redefine Easy5 names. Fortran and C components can use any legitimate Fortran or
C name and are not subject to this unique variable naming convention. Therefore, Fortran and C component
inputs and output names are by default, user-defined.

The default naming convention for all Library component inputs and outputs consists of up to 60 characters,
separated into three parts by underscores, as shown in the example Component Data Table in Figure 14.

Figure 14 Inputs Tab for MC Component

53Chapter 1: Reference Manual Topics
Components
The example input, S_In2_MC, describes a signal input into an MC component port from an output Gain
component. As you can see, there are three input ports. Easy5 automatically increments the port numbers if
there is more than one to make each input unique.

The first part of the input or output name identifies the type of input or output. In this case, it is the signal
input as designated by the letter S. The second part of the input in the example shown is designated as “In”
meaning that this is an input. In this case, it is In1, In2, or In3. The last part of the input or output defines
the component using the default component name, in this case, the MC component.

Figure 15 shows an example of a signal output from the MC component, S_Out_MC. Since there is just one
output, there is no port number indicated.

Figure 15 Output Variables Tab for MC Component

Reference Manual
Components

54
Blocks
In order to simplify the process of model building, Easy5 contains a set of predefined library components
referred to as blocks, which represent commonly used dynamic and mathematical effects. These blocks model
many common dynamic effects such as integration, linear transfer function, and function generation, and
specialized effects such as coulomb friction and hysteresis. Blocks are contained in the General Purpose (GP)
Library, and the Interactive Simulation (IS) library, both of which are standard delivered libraries.

A block is considered to be a primitive component in that it only has the primitive attributes of a component.
For example, blocks are generally single input/single output. An example is the TF (Transfer Function) block.
This block is generally used with a single input (named S_In_TF) and a single output (named S_Out_TF).
Blocks may be multi-input/multi-output, however the connections between blocks are single data connections.

For example, the MC (multiply and add) block has 3 inputs (S_In_MC, S_In2_MC, and S_In3_MC)
and one output (S_Out_MC). However, connections between MC and other blocks only transfer one
data variable.

The real advantage to using blocks in your Easy5 model is that these blocks, which are actually Fortran
subroutines in compiled form, have been thoroughly verified and written by modeling professionals and are
protected from modification. Not only do they contain a high degree of modeling accuracy, but they also have
been carefully designed for speed. Thus, you can concentrate on the interconnection of blocks to build your
system model, and be assured that the theoretical equations and the implementation of these equations are
correct.

Standard Components
Standard components are library components that are different from blocks in that they may be multi-
input/multi-output and the connections between these components can be multi data connections.Figure 16 is
a good example of using standard components. These components are from the EC library. Even though only
one connection line is shown between these components, they are bidirectional and multi-data connections.
Each connection line shows the connection of five variables: T, W, SH, CO, and P, where P (pressure)
connects in the negative (upstream) direction. Such attributes are not possible
with blocks.

Note: Component input and output default names can be changed to a user-defined name of up to
60 alphanumeric characters. See “User-Defined Names”, for information on how to define your
own names.

55Chapter 1: Reference Manual Topics
Components
Figure 16 Example of Using Standard Components

The GP and IS libraries are considered to be block libraries, because the components exhibit block like
characteristics, whereas the HB & HC (Hydraulic), EC (Environment Control), VC (Multiphase Fluid) and
the PT (Powertrain) libraries are called component libraries, and are purchased (or licensed) libraries.

Code Components
You have the option of modeling all or part of your system in Fortran and or C code. Fortran and C code are
added to an Easy5 model using a Fortran code component or a C code component. Once defined, Fortran
and C components are connected directly into the rest of your Easy5 schematic just like Standard
components. You can place as many code components in your model as you wish.

Fortran components are defined by placing an empty Fortran template in your model schematic and then
placing Fortran code in it. A simple example of creating a Fortran component is shown below:.

Note: The terms component and block are sometimes used interchangeably without loss of meaning.

Reference Manual
Components

56
Figure 17 Example of Fortran Component Data Table

Fortran code is entered directly into the component using the full screen editor provided or, you can import
existing source code into the component and then edit it as needed. Input and output variables referenced in
the respective source code which will be connected to other components are then declared.

You also have the option of requesting that Easy5 sort the equations in your Fortran components during
model generation. C components are very similar in usage and structure as the example of the Fortran
component shown in Figure 17. For more information refer to “C Component”.

Code components are useful because Easy5’s Library components may not provide the exact modeling
effect(s) you need. Code components also allow you to include routines from external libraries in your Easy5
model, to access external data sets or files during the course of an Easy5 analysis, and to link in external
Fortran, C, or other code.

Complete information on how to create and use code components is also given in the User Guide, Chapter 5 -
Code Components in the section "Creating a User Code Component".

User-defined Library Components
Library component code, representing the equations that define the input and output relationships
represented by the Library Component, is written in stylized Fortran that contains various markers, allowing
the Easy5 Model Generation program to create a unique copy of the code each time it is used in a given
model.

You should write Library components to model specialized effects or subsystems when these features are to
be included more than once in the same model, or used in other Easy5 models.

57Chapter 1: Reference Manual Topics
Components
Library Component inputs and outputs are defined in the same way as inputs and outputs from User Code
components. Input and output specification forms are used to define the inputs and outputs. You complete
these forms in the same manner used to define User Code inputs and outputs, as described in the User Guide,
Chapter 5 - Code Components. Library components provide you with all the flexibility of Fortran components,
in addition to allowing you to generate a component library that is unique to your application. Once defined,
Library Components are used exactly like any other Easy5 component. Users of Library components may be
precluded from modifying the underlying code. This allows tight configuration control and maintenance of
application specific component libraries developed for a given user community.

Library components are constructed almost exactly like Fortran components, except that Library
Components are written in a pseudo-Fortran language that facilitates multiple component usage.

Figure 18 shows a section of code as it would appear both in a Library component and a Standard component.

Figure 18 Comparison of Library Component and Standard Component Code

The resulting code is automatically filled in by the Easy5 code generator when the respective Library
component is referenced in a model, to ensure that all variable names and statement labels are uniquely
defined in the executable model. For more information, refer to the User Guide, Chapter 5 - Code Components.

Extension Components
Extensions are special components used to link other stand-alone applications to your Easy5 model. Although
a powerful modeling feature, Extensions are not something the average user develops, but rather they are a
mechanism for other application software developers to seamlessly link their modeling tools to Easy5.

Extensions that have been developed include links to MSC.NASTRAN, GSDS autocode generator, and the
multibody dynamics modeling tools DADS® developed by LMS and Adams® (also by MSC.Software). Users
of these Extensions will be able to access any mechanism generated in these packages as a component in the
Easy5 Add Components window.

C COMPONENT FI
C

R FI= (V_Supply_FI - V_Load_FI)Inss_FI
IF (R_FI .LT. 0) R_FI = 0

C Rate of continuous state V_Load_FI
 IF(INX(2).NE.0) XDOT(2)=(I_Supply_FI - I_Supply_RE) / C_FI
C Rate of continuous state I_Supply_FI
 IF(INX(1).NE.0) XDOT(1)=(V_Supply_FI - V_Load_FI-
 & I_Supply_FI * R_FI)/L_FI

C COMPONENT FI
C
 CALL EZCRFI(I_Supply_FI,XDOT(1),INX(1),V_Load_FI,XDOT(2),INX(2)
& R_FI,Inss_FI,C_FI,L_FI,I_Load_FI,V_Supply_FI,'FI')

Standard Component Code

Library Component Code

Reference Manual
Components

58
Extension components are added just like other components via the Add Components window. For more
information, refer to the Technical Note on Easy5 Extensions.

Dimensioned Components
The inputs and outputs of components can be either scalar or array quantities. Sometimes it is convenient to
design a model with many identical scalar loops as one loop with variables that are arrays: i.e., a vectorized
loop. This not only simplifies the model schematic, but speeds the execution of the model during analysis,
by lowering the amount of program "overhead" for name storage and by utilizing higher speed vector
processing algorithms on your computer.

By default, all component data are considered as scalars, and are given the default dimension of 0. However,
you can dimension or vectorize many standard components by changing the values in the (Dimension
parameter N): data field in the CDT Configuration Tab.

An example of a dimensioned component is shown in Figure 19. The transfer function component (TF) data
table is shown (with the “States” tab visible) with the dimension parameter “Channels (N)” changed from a
default value of 0 (scalar) to 2. Notice that all inputs and outputs are defined by two element vectors.

This component can be vectorized with only one dimension parameter, N -- as shown in the Configuration
tab in for this component in Figure 20.

59Chapter 1: Reference Manual Topics
Components
Figure 19 Sample Data Table of a Vectorized Component

Figure 20 TF Component Vectorized with one dimension parameter

This is apparent from the dimension parameter N displayed in the “Channels (N)” data field. General
Purpose (gp) Library components that can be vectorized with 2 dimensions typically have a (dimension
parameter) N and a (dimension parameter) M data field in the Configuration tab for the component
instance.

Reference Manual
Component Data Table

60
Component Data Table
See also: "Components"

"Parameters - Defining Input Values"
"States"

The component inputs and outputs are defined in a data table called the Component Data Table (CDT).
The CDT is your view into the component.

To open or examine any component data table, select the component with the middle mouse button or
double-click the left mouse button. Open the One-dimensional function generator (FU) component using
this method. This opens the component data table as shown in Figure 21. The Component Data Table uses
tabs to display and access all component data, including inputs, outputs, variables, states, and configuration
data that are editable by the user.

Figure 21 Example of a Component Data Table

Specific information on the component is accessed by selecting the appropriate Tab. To access additional
important information about a component, click the [Info] button; this opens the online component file.
When you have finished examining this information, close the dialog and continue to further define the
component.

Documentation/Configuration Tab
A Component Description field describes the component, and if applicable, configuration settings are offered
here to select the appropriate configuration. Since some components have many configurations each
configuration provides different equations, data input/out and icons.

61Chapter 1: Reference Manual Topics
Component Data Table
The GD Library Check Valve (VC) component has multiple configurations that can be selected via 3 feature
parameters, and one dimension parameter:

Figure 22 Example of Multiple Configurations

An “Information” (“i”) button is provided to obtain more detailed information on a specific feature
parameter, as shown at left. In addition, the current feature parameter selection is written to the “Component
Description” field.

Architecture Check Direction: Pilot Mode:

Resistive Forward, Reverse Simple (Not Piloted)

Resistive/Storage Forward, Reverse Pilot-to-Open

Forward, Reverse Pilot-to-Close

Reference Manual
Component Data Table

62
Figure 23 Information Button

Inputs Tab
Editable fields including: Input Name with a display of primary and secondary inputs and an optional display
of connected inputs, Value/Type, Description and Units.

63Chapter 1: Reference Manual Topics
Component Data Table
Figure 24 Example of Inputs and Other Parameters for VC Component

Dynamic Sizing of the Summing Junction - You can dynamically set the number of inputs from 2 to n.

Reference Manual
Component Data Table

64
Figure 25 Dynamic Sizing of Summing Junction

In this example, below, the number of inputs has been set to 5:

65Chapter 1: Reference Manual Topics
Component Data Table
Figure 26 Dynamic Sizing of Summing Junction

States Tab
Displays IC Value, Description, Units, percentage of Error, and Frozen flag. Secondary states (not shown
here) are assigned to “internal” switch states.

Reference Manual
Component Data Table

66
Figure 27 Example of States Tab

Variables Tab
Displays complete information on outputs: Name, Size/Type, Description and Units.

Figure 28 Example of Variables Tab

67Chapter 1: Reference Manual Topics
Connecting Components
Version Tab
This tab offers configuration control Information for the component including the library, default title,
library group, and timestamp..

Figure 29 Example of Version Tab

User-Comments Tab
This tab is used to provide the user the ability to enter text to document the particular instance of the
component in the model. This field only accepts plain text. User Notes are included in the model
documentation automatically.

Connecting Components
See also:"Connection Lines"

Components are connected using connection lines. Connections lines denote a transfer of data between
components. The usage of connections in Easy5 sets it apart from other similar software tools. In Easy5,
connections may be multi-input/output, and may be bidirectional (data flows both upstream and
downstream). As a result, a single connection arrow indicates that one or more input/output data connections
have been established between components that is, multiple redundant arrows are not drawn.

There are three types of connections:

 Default connections

Reference Manual
Connecting Components

68
 Port connections
 Custom connections

Each of these methods of connecting components will be described in the sections that follow.

Rules for Connecting Components
The following rules apply when connecting components:

 Any component input can be driven by, or connected to the output of another component.
 Each input signal can only be driven by one output signal.
 An output can be connected to one or more component inputs.
 Inputs and outputs don't have to be connected to anything.
 When an output is connected to an input, the name associated with the input is replaced with the

output name. In other words, only one variable name is associated with a connection between two
components, and that name is always the output variable name.

 An element of a vector output can be connected directly to a scalar input, but a scalar output cannot
be connected directly to an element of a vector input. The VX component can be used to connect
scalar outputs to a vector input (VX is a MUX function).

Default Connections
You will find that many Easy5 standard components have similar types of inputs and outputs, as these
components are often connected on a block diagram. To streamline the connection specifications for such
components, default connections can be made.

If you make a default connection, the connection will occur provided that two conditions are met.

 First, the output name(s) of the From component must be the same as the input name(s) of the To
component.

 Second, the output and input type(s) must match.

This means they must both be ported or nonported types. (“Port” is a designation, associated with certain
inputs and outputs, that is used in the default connection logic.)

A default connection can be established by the following method:

1. Select the "from" component

2. Select the "to" component.

When a connection is made, an arrow is drawn between the respective components on the Easy5
schematic. This arrow indicates that one or more input/output connections have been established
(i.e., redundant arrows are not drawn).

The default connection is the easiest way of connecting compatible components.

Figure 30 shows some typical components with ported inputs and outputs.

69Chapter 1: Reference Manual Topics
Connecting Components
A default connection can be made from TF to MD. Specifically, the output quantity S at port (Out) of TF
will, by default, connect to the input quantity S at port (In) of MD, because the names match and they are
ported quantities.

On the other hand, a default connection cannot be made from TF to XP, because even though they both are
ported quantities, the names are not the same (i.e. S doesn’t equal W).

Figure 30 Typical Component Inputs and Outputs

As another example, note that a default connection can be made from components MD to MM. All the
quantities are of the same type (nonported), and the output and input names are the same. Multiple inputs
and outputs will connect to each other if the default connection criteria is satisfied.

Often, a component with only one ported output will be connected to a component with multiple ported
inputs. As an example, consider a connection from TF to SW. In this case, a default connection would take
place, but there is a choice: SW has two input ports with the same quantity names, S_In1 and S_In2. To
resolve this matter, Easy5 would display a dialog allowing you to choose which connection to make.

S_In(N)

W_In(3)

S_In(N)

Q(N)

QD(N)

QDD(N)

S_In1

S_In2

S_Out(N)

S_Out

W_Out(3)

Q(N)

QD(N)

QDD(N)

X(3)

XD(3)

XDD(3)

TF

XP

MD

MM

SW

Reference Manual
Connecting Components

70
When the default connection logic does not meet your connection requirements, you can create "Port"
(ported input to ported output) or "Custom" connections to further modify a connection scheme between
two components.

Port Connections
Port connections allow you to specify the connection of individual output ports to input ports. A port is
simply an attribute, or tag, assigned to one or more inputs/outputs of a component and is used by Easy5 when
making connections. Ports are identified with a unique port name and port number. To see how port
connections work, try a connection from component AF to component SJ using the following procedure.

1. Specify the direction of the connection by first selecting the From component (AF) and then selecting
the To component (SJ). A port connection table opens, as shown in Figure 31.

Figure 31 Connection Data Table for the AF -> SJ Connection

The connection table shows that the AF component has one output “Out”. The SJ component is a
summation block; it has two ported inputs In1 and In2 (Feedback). Easy5 automatically opens the port
connection table because it needs to know which input of SJ you want to connect to. The port numbers are
really not important; the port name are the most useful because they describe the port.

2. Select Out, and then select In1. The connection is displayed in the Connection Specification column
as Out -> In1.

3. Select OK to close the dialog. A connection line is made between the two components with a
connection line label. This connection is examined in more detail in the next section.

71Chapter 1: Reference Manual Topics
Connecting Components
Default Port Connection Points
Component designers can designate a specific default connection point on a component icon that indicates
where the end of the connection line is to be drawn when the connection is made. In addition, the default
connection points are preserved:

 If components are moved
 If an alternate icon is selected.

Example 1:

Autorouted connection from the Exit of a Heat Exchanger to Inlet2 of a Merge (regardless of their relative
positions).

Example 2:

Autorouted connection from a Gain block to the feedback port of a summing junction.

The “Port” connection option gives you the flexibility to specify the connection of individual ported outputs
to ported inputs.

Note: Users can override the default connection point, although this is NOT recommended.

Reference Manual
Connecting Components

72
This option is useful in connecting hydraulic and environmental control system components, since these
components contain input/output ports defined with multiple variables.

On occasion, the default and port connection options will not meet your connection requirements. When
this is the case, you can create "Custom" connections.

Custom Connections
Custom connections are used to connect components with incompatible port designations and input/output
names. If this conditions occurs while connecting components, Easy5 recognizes that a default connection
cannot be made. The message line warns you with the comment "cannot make a default connection", and
automatically displays the connection table.

Specifying custom connections provides you with a great deal of flexibility by allowing you to connect any
component output to any component input, regardless of name dissimilarity. You can even connect an
element of a vector output to a scalar input. The only thing you cannot do with custom connections is
connect a scalar output to an element of a vector input. This type of connection can only be made using the
VX component or a code component (C or Fortran).

You may also force the connection to be a custom connection. A custom connection is established by the
following method.

 Select the "from" component with a CLICK-L.
 Select the "to" component with a <Ctrl>CLICK-L (hold the Ctrl key while selecting the "to"

component).

A Connection Data Table will appear similar to the table shown in Figure 31. To complete a custom
connection, select the appropriate output name from the first column of the connection table. Then select
the respective input name in the second column.

You will notice that as soon as an input is specified, a connection is noted in column three of the connection
table, as shown in Figure 32.

Note: Pressing the Ctrl key while selecting the "to" component forces a custom connection.

73Chapter 1: Reference Manual Topics
Connecting Components
Figure 32 Making a Custom Connection GN2 -> SJ Connection

Also notice that the connected input is dimmed, indicating that this input has been used and that it cannot
be connected to any other output.

You can make multiple output to input connections in a connection table as long as unconnected inputs are
available. When you have finished making connections, close the connection table by selecting [OK].

If you close the connection table with “Cancel”, all the changes you made to the table will be lost; any existing
connections in effect when the table was first opened will still be there.

If any of the components in your model have been vectorized, their outputs will be appropriately
dimensioned. You can make a custom connection between a vectorized output and a scalar input using the
custom connection method described above.

You can make default, ported, or custom connections between vectorized components only when the
dimensions of the two components are equal. If you want to make a connection between dissimilarly
dimensioned components, you must insert a Fortran component between these components and make the
connections manually with Fortran (i.e., "outname(#)" = "inname(#)"). A Fortran component must also be

Custom connection

Note: A custom connection is required when connecting to or from any Fortran component,
because Fortran inputs/outputs cannot be defined with port numbers. As a result, a
connection data table automatically displays forcing you to perform a custom connection to
or from a Fortran component.

Reference Manual
Connecting Components

74
used if you want to change the order in which elements of vectorized inputs and outputs are connected. See
the next section, "Connecting Incompatibly Vectorized Components", for more information.

In general, when you specify a connection between components, Easy5 eliminates the Fortran variable name
associated with the input and replaces it with the respective output name. Thus, only one variable name exists
for each connection between an input/output pair. If you were to connect a scalar output directly to a vector
input, the name associated with one element of the vector would have to be replaced with the name of the
scalar value. This name change violates the rules of Fortran.

Making a Branch Connection
A component output that “branches” to many components can be made into a “branch connection”. An
example of a branch connection is shown in the right hand schematic in Figure 33. In this example, the output
of the SF component named “command” connects to three other components. The schematic on the left
shows the standard method of displaying three connection lines emanating from the SF component. The
branch connection however has only one connection line exiting the SF component, and three branches
emanating from the connection line to each component. Functionally, both schematics are identical, but
graphically, the branched connection is easier to read and cleaner looking.

To create a branch connection, first select the connection line (instead of the component), then select the
component you wish to connect to. Easy5 draws a connection line emanating from the connection line, and
puts a solder joint at the junction where the branch connection initiates.

Note that branch connections become anchored.

75Chapter 1: Reference Manual Topics
Connecting Components
Figure 33 Example of a Branch Connection

Connecting Incompatibly Vectorized Components
There are two kinds of connections that cannot be made directly between the various types of Easy5
components, as follows:

1. You cannot connect a scalar output to an element of a vector or array input.

2. You cannot connect two vectorized components with different dimensions.

To connect a scalar output to an element of a vector input, insert the VX component between the
components to be connected. This component connects up to five scalar outputs to a vectorized component
of dimension five or less.

If a scalar to vector connection of more than 5 connections is required, then a Fortran component must be
used as described in the following example.

To make a connection between a 6 or more scalar outputs to an array input, or connect two or more
vectorized components with different dimensions, you must insert a Fortran component between the
components to be connected. In effect, the Fortran component acts as a connecting bridge between
mismatched inputs and outputs.

Reference Manual
Connection Lines

76
For example, to connect the output from six scalar components (six scalar outputs) to a component with a
vectorized input of dimension six, the following Fortran component with the following code is needed:

C Fortran COMPONENT INPUTS: INPUT1, INPUT2, INPUT3, INPUT4,
C INPUT5, INPUT6
C Fortran COMPONENT OUTPUTS: OUTPUT(6)
C
C Fortran CODE:

 OUTPUT(1) = INPUT1
 OUTPUT(2) = INPUT2
 OUTPUT(3) = INPUT3
 OUTPUT(4) = INPUT4
 OUTPUT(5) = INPUT5
 OUTPUT(6) = INPUT6

This Fortran component could then be connected between the six scalar and the one vectorized component,
because the dimensions match for all input/output interfaces.

Connection Lines
When connections are drawn between components, Easy5 automatically routes the connection line to apply
a best fit. The automatic routing of a connection line is called an autoroute connection. The autoroute
connection is drawn such that the lines do not cross a component icon, and the shortest possible route is
traced. However, you may manipulate connection lines to change the routing. Any time you move the
autorouted connection line, it becomes an anchored connection.

Moving Connection Line Endpoints
Connection lines originate from and terminate at connection pins. Connection pins are attached to the
component icon, and specify where the connection line endpoints are “pinned” or anchored.

Figure 34 shows the connection pins around the TF component as red carets (^). Every component has a total
of 20 connection pins, usually five on each side.

77Chapter 1: Reference Manual Topics
Connection Lines
Figure 34 Anchored Connection Line

Connection line endpoints are moved by selecting and moving an endpoint from one pin to another. Figure 34
shows an example of moving the TF component connection line endpoint from the bottom to the right side.
Move this connection line endpoint on your model following the steps given here.

Procedure for moving endpoints
1. Select the connection line with HOLD-L from the TF component as shown in Figure 34. In this case,

you want to move the output connection line endpoint, so select the connection line near the
endpoint.

2. While holding down the left mouse button, drag the connection line over to the right side of the TF
component, and place the cursor near the pin that you want to connect to.

3. CLICK-L to drop the connection endpoint onto the connection pin. The connection endpoint is not
anchored, as indicated by the green dot on the endpoint that was moved.

Moving Connection Line Segments
You can also move the line segments of an anchored connection line. A vertical line segment can be moved
left and right; a horizontal line segment, up and down as shown in Figure 35.

Note: When you select any connection line and hold the mouse button, the connection pins
display to indicate where you can move the endpoint.

Reference Manual
Connection Lines

78
Figure 35 Moving a Connection Line Segment

To move a connection line segment:

1. Select the connection line segment with left-click hold from the TF component.

2. Move the line segment to the right and to the left and drop it where you feel it should be placed.

Changing an Anchored Connection Back to an Autoroute Connection
An anchored connection can be changed back to an autoroute connection by selecting it with SHIFT-
CLICK-R, or using the right-click menu item “Autoroute”.

Customized Line Routing
Default connection line routing uses straight line segments to “autoroute” a connection between the “from”
and “to” components. To further customize your connection line routing, you can add a connection “point”
or “jog”. A connection point consists of an additional connection line node (used as an additional “corner”
for a connection line segment), while a jog consists of a pair of nodes -- used to easily add a perpendicular
line segment.

79Chapter 1: Reference Manual Topics
Connection Lines
Figure 36 Inserting A Point

For example, to insert an additional connection line point, select a connection line, then right-click and select
the menu item “Insert Point”. The resulting connection line will include an additional “point” in
the connection line, as shown in Figure 36. Each point is identified by a small solid square on the connection
line.

Figure 37 Adding a Corner

Reference Manual
Connection Lines

80
Then, simply move the connection line point, to introduce a new “corner”, as shown in Figure 37. In a similar
manner, connection lines can be made to approximate contours consisting of multiple small line segments,
as shown in Figure 38.

Figure 38 Contour

Defining Connection Line Labels and Attributes
You have seen how labels are automatically attached to connection lines. The label is the name of a single
output that is connected. For example, the IN component output variable name is S_ Out_TF and is
connected into the TF gain block.

Easy5 automatically applies the connection labels and determines the best attributes, such as position and
orientation, for the given connection line configuration. However, you can override the default attributes.
Connection attributes are defined and managed on an individual basis. Some example connection line labels
are shown in Figure 39.

81Chapter 1: Reference Manual Topics
Connection Lines
Figure 39 Example of Connection Line Labels

The output of the AF block is the variable named Command, and is connected to the summation block MC.
This is a single data input/output connection and therefore the label Command is applied to the connection
line. The TF component has two outputs (X1 and S_Out renamed as Filter_sgnl). However, only one output,
Filter_sgnl is connected to the MC component, and the label is applied to the connection.

Labels can only be applied to single data connections, and cannot be applied to multi-data connections. The
connection between the MD and the MM component cannot be labeled. Even though only one connection
line is drawn, it is actually a multi-data connection that connects the following three
data values:

Q_MD -> Q_MM
QD_MD -> QD_MM
QDD_MD -> QDD_MM

If you need labels for multi-data connections, you have three methods of adding labels:

Reference Manual
Connection Lines

82
1. The best method is to CLICK-R on the connection line, then select Line Attributes. Enter the desired
label in the Label String field.

2. Use the icon editor to edit the component icon and add your own labels to the output or input of the
component.

3. If possible, make the component connection a "port" connection. Then, port labels will automatically
be applied when the connection is made. This is described in the next section.

To change the connection line attribute, CLICK-R to access the connection menu as follows.

1. Right click the IN -> TF connection line to display the Connection menu shown in Figure 40. While
holding down the right mouse button, select Line Attributes....

Figure 40 Connection Menu

2. This opens the window shown in that Figure 41 lets you select whether you want to display the
connection line label, and how it is to be displayed, its position, orientation, arrowheads on/off,
location, line type, and color.

The color attribute is applied to both the label text and the connection line. To change the orientation
from horizontal to vertical and move the label to the end, click the Vertical radio button in the
Orientation box and click the Head End radio button in the Location box.

83Chapter 1: Reference Manual Topics
Connection Lines
Figure 41 Edit Connection Attributes

3. Click OK to close the form. The label is then displayed vertically and at the connection’s head end
(near the arrow head).

Connection Line Navigation
Connection lines show the flow of data between components. It can be difficult to “navigate” connections
lines in large models, especially connection lines that jump down/up several submodel hierarchical levels. To
help you follow the path of a connection line, select the connection line with a Ctrl+right-click (or menu item
“Goto End”.

If the connection is into/out of a submodel, it will find and highlight the component that the connection
goes to. If the connection is within the same hierarchical level, a dialog displays allowing you to “select which
end to find”, as shown in Figure 42.

Reference Manual
Connection Lines

84
Figure 42 Find Connection End Dialog

You have the choice of selecting the [From] or [To] pushbuttons. From finds the component from which the
connection initiates, To finds the component that terminates the connection.

Submodel Connection Labels
Connections into and out of submodels are labeled with submodel labels. The submodel label displays the
component name that the submodel is connected to. An example of an opened submodel with connection
labels is shown in Figure 43.

Figure 43 Example of Submodel Connection Labels

The submodel labels are displayed next to the filled in semicircles. For example, the output of the SJ
component named error is connected into this submodel, to the input of the GN component. The submodel
label SJ indicates that the connection comes from the SJ component.

Connection Label Options
By default, connection labels are applied when a model is being built. To turn off this options deselect the
radio button in the following menu:

Options > Label New Connections

Connection labels can be applied globally to the entire model by selecting:

Edit > Label All Connections

Or, connection labels can be deleted globally by selecting:

Edit > Delete All Connection Labels

Each of the three types of labels can be turned on/off individually by deselecting the following check boxes
from the View menu:

Show Output Labels

Show Port Labels

Show Submodel Labels

When the check box is NOT visible, the labels are NOT shown. When visible and checked, the labels are
visible.

85Chapter 1: Reference Manual Topics
Connection Lines
Moving Submodel Connection Nodes
Connection lines that enter/exit submodels go through submodel nodes drawn as filled semicircles, as shown
in Figure 45: Example of Moving Submodel Connection Lines. The nodes are used to show which components are
connected to the submodel, and how the connection is formed. The component name is displayed with the
associated node.

By default, the connection lines and the placement of the submodel nodes are made to correlate the
connection at the submodel level with the connection at the higher block diagram level. The nodes are placed
on the side of the submodel window to match the same side that the connection is made at the upper block
diagram level. For example, if at the top schematic level, a connection enters the submodel icon from the left
side, then, the submodel will have the node on the left side to force the connection line to enter from the left.
This correlation between the submodel connection and the connection at the higher block diagram level is
done to maintain a consistent display of the connection lines, making it easier to follow connections into and
out of submodels.

You may break this default submodel connection scheme by moving the submodel node. To do this, just
select the node with a HOLD-CLICK-L, and drag the node to another edge, as shown in Figure 44.

Note that nodes only reside on the submodel edges; therefore, you may only move the node to a different
edge. A green dot is displayed on nodes that are moved.

If you move a submodel node to a new edge, the connection line at the higher block diagram hierarchy will
also move to correlate with the same side.

Reference Manual
Connection Lines

86
Figure 44 Example of Moving Submodel Connection Lines

In Figure 44, the submodel node from the top edge is moved to the right edge. As a result, the connection out
of the submodel icon will also emanate from the right side. A yellow dot is displayed on the submodel icon
to indicate that the underlying submodel connection node was moved from its matching “current view” side
of the component.

You can break the connection correlation by moving the connection line endpoint on the submodel icon. By
doing this, there is no correlation between the connection into/out of the submodel icon, and the connection
within the submodel. A red dot is displayed on the submodel icon to indicate that the submodel connection
no longer correlates.

An example of overriding the default submodel connection is shown in Figure 45. In this submodel,
connection into the submodel icon was moved from the top of the icon to the bottom.

Figure 45 Example of Breaking Submodel Connection Lines

However, if you examine the submodel, the connection within the submodel still shows the connection
emanating from the top side. As a result, there is no correlation between the submodel icon and the submodel
schematic.

Connection Line Color Dots
Colored “dots” are added to the endpoints of connection lines to indicate the type of forced connection being
used. These dots are used as a visual reference only, and are not printed when printing the schematic. A green
dot represents a user initiated move, a yellow dot represents a cross submodel move where the connection on
the other side of the submodel was the one moved by the user.

A red dot indicates that a connection across a submodel is not being drawn consistently, that is, the
correlation between the connection into/out of the submodel icon does not match the connection into/out
of the actual submodel boundary.

87Chapter 1: Reference Manual Topics
Copying Components and Models
In summary, the connection line dot colors are used as follows:

1. If a connection has been made with default routing, no dots are used.

2. If a default connection is moved on the side of a component, the dot is green.

3. If a default connection is moved on the submodel icon, the dot on the submodel icon is drawn green
and the dot inside the submodel connection boundary is drawn yellow.

4. If a default connection is moved on the inside of a submodel connection boundary, the dot on the
inside is drawn green and the dot on the submodel icon is drawn yellow.

5. If a connection across a submodel is broken as a result of a user moving a yellow dot, the just moved
yellow dot is changed to red and the corresponding green dot on the submodel icon side is changed
to red.

6. If a connection ever becomes broken as a result of a user initiated move where it is not possible to keep
the order of connections across a submodel consistent, both dots on either side of the submodel are
drawn in red.

7. If a “pin-to-pin” type connection is established (to an icon with a defined port), a pink dot is used to
indicate this.

Copying Components and Models
Components can be copied within a model, to another model, or from a different model. When a group of
components is copied, all their characteristics, including connections and data contained in the component
data tables, are copied with them. This saves time when constructing models that contain repeated
component groups. The Model Building license feature is required for any model editing.

Copying Components within a Model
To make a copy of a single component, select it, then either choose the cut and paste icons from the toolbar,
or enter the accelerator keys, Ctrl+C, then Ctrl+V.

The method for copying a group of components within a model is similar to moving groups of components.
You copy a group of components using a selection box to capture the group. Then you move the selection
box across the schematic to a desired location and enter Ctrl+P to copy the components into that location.

The component group can be copied to any part of the main schematic and to any submodel. Easy5
automatically assigns a 2-character component identifier to the new components, avoiding duplicate
component names.

To copy a group of components:
1. Press the Ctrl key and select the components you want to copy by clicking on each component.

2. Select the Copy icon from the toolbar, or press Ctrl+C.

3. Place the pointer where you want to copy the component group, then select the Paste icon from the
toolbar, or press Ctrl+V.

Reference Manual
Data Display

88
Note how the connection arrows between the copied components are also copied. Easy5
automatically renamed the components with unique component identifiers.

4. Before proceeding, delete the group of copied components by selecting them and pressing Delete.

Copying Components From or To Another Model
You can copy components from or to another model. This is done by first copying the components into a
temporary model, and then opening the destination model and copying the components in from the
temporary model.

To copy a group of components from one model into another:
1. Open the model that you want copy components from.

2. Press Ctrl and select the components you want to copy, or draw a selection box to encapsulate these
components.

3. Select Edit > Save Group As... from the main menu.

4. In the file dialog, enter a new model name to copy the components into, such as temp.

5. Open the model that you want copy components to.

6. Select Edit > Import Model From from the main menu, and select the model you wish to copy (for
example, temp).

7. A selection box with a crosshair in the lower left corner displays.

8. Move this box to any location on the schematic pad where you want to place the copied components,
and then release the mouse button to drop the components into place.

Copying Components With User-defined Names
When components are copied, the two character component identifier is automatically changed. The two
character identifier is used in the naming convention to define default input/output names. This naming
convention guarantees that Easy5 defined default names are always unique.

However, if the user changes the default name(s) to a user-defined name(s), when copied, the user-defined
names must be changed by the user. Fortran component input and output names are also considered to be
user-defined names. When one or more components containing user-defined names are copied, Easy5
automatically renames all conflicting names, but pops up a “rename” window to assist the user in changing
user-defined names. For information on how to use the rename feature, see “User-Defined Names”.

Data Display
Using schematic text annotation, operating point information can be displayed on the schematic and be tied
to a specific component icon or placed anywhere on the schematic using special display icons.
This allows operating point data (states, parameters only) to be displayed on your schematic directly
(Figure 46).

89Chapter 1: Reference Manual Topics
Data Display
Figure 46 Operating Point Information Display

To create a text note on your schematic, right-click on any empty portion of the schematic to display the pop-
up Schmatic Menu.

Select the Add Text Note menu item or press the letter T on your keyboard. The words Text Note display on
your schematic, where you placed your pointer.

Reference Manual
Data Display

90
Figure 47 Schematic Menu

To open and define your text note, double left-click on the words Text Note to the Text Note Properties dialog
shown in Figure 48.

91Chapter 1: Reference Manual Topics
Data Display
Figure 48 Text Note Properties Dialog

Place your cursor in the left text box and write your note. To include actual data from your model, use the
“Show Name List” button to select any model quantity available to include in a Text Note. Model data is
represented by a model name enclosed by single quotes (as ‘<name>’). Additional text can be used to provide
name, units, etc., such as “P=’p_Out_PI23’ (bar)”.

Data formatting instructions can include any valid C-format string enclosed in square brackets, just after the
first quote of the name, in the form: “‘[%<format>]<name>’. Other formatting can also made to modify the
text color, background, font size, etc. For example, consider the following text note dialog, used to list the
values of some model quantities from a hydraulics model.

Figure 49 Text Note with Data Values

The resulting output on the schematic would appear similar to the values shown to the left of the icon shown
in Figure 50.

Reference Manual
Data Types

92
Figure 50 Output Values Displayed on Schematic

Note that any valid C formatting instructions can be used, but if an error occurs no data will appear. It is up
to the user to correctly specify C-formatting instructions.

Some commonly used C-format constructs are:

%E exponential notation
%.1f floating point number, show one digit to the right of the decimal point
%.0f floating point number, show no digit to the right of the decimal point

Data Types
See also: "Parameters - Defining Input Values"

"States"

Note: Any model quantity (at a given operating point) can be displayed using a text note. However,
if the model quantity is a “variable”, then the value can only be loaded by importing an
operating point file generated either by the frontend, or as stored in the model file itself. It
is possible to generate operating point data (.ezic) files that do not contain data for model
“variables”. When this happens, the value will be displayed as “unavailable”.

93Chapter 1: Reference Manual Topics
Data Types
All data inputs and outputs of an Easy5 components fall into four distinct classifications: states, variables,
parameters, and tables. The PU Pump component from the hydraulics library is a good example of a
component that uses all four types of data. The following paragraphs describes these four types of data.

States
States are variable output quantities in the system model that are functions of first order differential or
difference equations. For example, a state variable occurs when position is calculated by using an integrator
to integrate velocity data. The output of the integrator (position) is a state. There are four types of state
variables: continuous, delay, sample (also called sample and hold states), and switch states. These states are
used in many standard components and can be added to any User Code and Library components you write.
For a complete discussion of states, see the first level section “States”.

Variables
Variables are output quantities in the system model that are a function of algebraic relationships. Simply put,
variables are defined by algebraic equations, and may be a function of states, variables, parameters or table
data.

Parameters
A parameter is an input to a component that is not connected to the output of another component. You
determine what will and what will not be a parameter when connecting the components in your model.
Parameters are assigned constant values before performing an analysis. These constants are derived from data
associated with the system you are modeling.

For example, a component that models gain has in input parameter called “K”, used to set the gain. You
define the constant gain parameter before performing an analysis. For more information, see “Parameters -
Defining Input Values”.

Tables
A table is a set of constant tabular data used by any of several components that produce outputs using a table
look up algorithm. In general, tables are used to represent algebraic functional relationships, containing from
one to nine independent variables, and they allow you to include a set of "real world" data into your model.
You can also design User Code and Library components which use table look up algorithms.

Table data is input and edited using the Matrix Editor. For more information on how to use tables, see the
User Guide, Chapter 5 - Code Components, the section "Defining a User Code Variable".

Tabular data can be generated using Excel, and imported into an Easy5 table using Easy5’s Matrix Editor. For
more information on how to import Excel data into an Easy5 table, see the User Guide, Chapter 8 - Table and
Matrix Editor, the section "Importing and Exporting Data".

Reference Manual
Debugging the Model and Analysis

94
Debugging the Model and Analysis
Debugging mostly makes sense for the following Easy5 analyses: Simulation, Single Call, and Initial Condition
Calculation. To run the analysis in the debug mode, select the [Debug Mode] toggle in the Build menu. This
will cause the model executable to be generated for debug purposes, allowing you to use an interactive
symbolic debugger at analysis runtime.

When you run an analysis in debug mode, you can set a breakpoint in subroutine EQMO (the Fortran
subroutine that represents your model), and then step through the code and monitor execution and print
intermediate results.

You can also set variables to different values if the results of a calculation are incorrect. Since there is significant
variation in the commands for the symbolic debugger between the different platforms, please consult the
reference manual (or man page) for your platform. An example of using a Windows debugger is given in the
following section, followed by a section describing a Sun/Solaris debugger.

Example of Using the Symbolic Debugger on Windows
The following example shows you how to use Compaq’s Visual Fortran symbolic debugger running on
Windows. This is example is not a tutorial and does not describe all the functions available. See the
appropriate Fortran or Microsoft C++ compiler manual for more information.

1. Select the Debug Mode from the Build menu. This causes your model to be compiled and linked
with debug options.

2. Select the “Debug the current analysis” button from the respective Easy5 analysis data form or
toolbar. Invoking the debug option causes the MSDEV program to invoke your model executable in
the debug environment. Selecting the “Execute this analysis” button will execute the analysis in non-
debug mode.

As the Microsoft Visual Studio debug environment loads you should see a related splash screen come
up, followed by a window titled “Microsoft Visual Studio” followed by your model executable name.

The only source code files available for symbolic debugging are:

 Your Fortran model executable - this is the subroutine created by Easy5 which comprises all your
components and submodels. This file is named <modelname>.f.

 Any C-Component code - if you are using any C-Components in your model, all code is combined
into one source file named <modelname>_c.c

 Your external routines or libraries - these must be compiled with the debug option previously and
linked in via The "Link External Object” Build menu item. For more information, refer to
"Compiling External Code", and for linking, see "Linking External Code".

Enabling the Debugger Toolbar
If you do not already have the Debugger Toolbar visible, select the View/Toolbars... menu item and ensure
that the “Debug” item is selected. This makes debugging operations (e.g. Go, Step, etc.) available via toolbar
buttons.

95Chapter 1: Reference Manual Topics
Debugging the Model and Analysis
Opening Source Files
Easy5 analysis and component libraries are not available for debugging purposes, that is, there is no source
code available for these routines for symbolic debugging. You need to open your model’s source file. Select
the File >Open menus, and select the <model name>.f file. This will open the model’s source file and display
it in the debugger window. If you have additional external code that is called and linked into your model, and
you would like to debug these files, then you must also open these source files. You are ready to create a
breakpoint and begin to debug.

Creating a BreakPoint
To create a breakpoint, you must open the source file as instructed above. Scroll down in the file and simply
select an executable line of your model code where a breakpoint should be placed. Use the “Insert Breakpoint”
(debug) button to set a breakpoint. You can also toggle breakpoints on and off by repeatedly selecting this
button.

A breakpoint is indicated by a filled (maroon) circle in the first column. You can place a breakpoint on any
executable line of source code. Usually only a handful are used to start you stepping through a portion of your
model executable source code.

Breakpoints can be centrally managed (e.g. selectively temporarily disabled) via the menu item
Edit/Breakpoints....

Activating Your Symbolic Debugging Session
To begin your symbolic debugging session you must first activate it. Either from the Go button, or via the F5
function key. Once your debugging session is activated, a new menu called “Debug” displays on your menu
bar. The "Debug" replaces the “Build” menu. You may also note that a background shell temporarily is
displayed on your screen. This is simply your background job which executes your Easy5 model executable.

Stepping Through Your Code
To step through your code, use the buttons provided for this, the Debug menu items, or keyboard shortcuts.
You can either Step into, Step over, Run to cursor, or Step out.

Starting, Restarting, Stopping
To initiate your model executable, you must select the Go button, or menu item. The Restart capability
allows you to start from the beginning again, if you passed your area of interest already. To stop, use the Stop
Debugging button or appropriate Debug menu item.

Caution: We recommend that you not enter the routine name using the Breakpoint menu item.
Rather, open the file and select breakpoints with your mouse. Why? Selecting via your mouse
is a more reliable method. There is less chance of specifying an incorrect breakpoint.

Reference Manual
Debugging the Model and Analysis

96
Examining a Variable
There are a variety of ways to display values of variables in your code. Perhaps the easiest is simply to ”hover”
your mouse over a FORTRAN variable. Its value should be automatically displayed. Other display options
are available. See the MS Developer Studio help for more information.

Determining Where the Model is Aborting
Other platforms may display termination information, called a “traceback”, directly in the Easy5 Analysis
Program Listing (APL) file. A traceback provides vital information about which error occurred and, most
importantly, at what line number in which routine. While this information cannot be provided during
normal execution under Windows platforms, fortunately you can obtain similar information by running the
debugger. However, you must first make a couple of changes to your debug environment.

Specifically, select the Debug/Exceptions... menu item to display a list of all possible exception conditions,
and what action will be taken if such a condition occurs. In most cases, we are interested in floating point
exceptions. Such exceptions begin with the word “Float”. By default, such exceptions are handled by Easy5’s
error handler. This is something we don’t want to use during a debug session, so that we can see at which
point the error occurs.

Therefore, we want to set all floating point exceptions to an Action of “Stop Always”. You will need to select
each exception (you can hold down the Shift key to select more than one exception), select “Stop Always”,
and then the “Change” button, followed by the OK button. Now, you are ready to let your model terminate.

Once, you have modified your exceptions, simply select the Go button. The debugger will stop at any
breakpoints you have set. Please remember that your model may be called many times until the termination
error you are trying to find occurs. For this reason, you may want to temporarily disable all breakpoints and
let the debugger execute until any floating point error occurs.

When it does, the symbolic debugger should stop at the line of code where the error occurred. If this line of
code is in your model (or an external source code routine you have provided and compiled in debug mode)
you should be able to see the line where the exception occurred. Otherwise, a Disassembly window may
appear (see below). Nevertheless, if you examine your Call Stack window you should see the line number at
which the debugger has stopped. The Call Stack window should be available by default, otherwise; it can be
activated via the Call Stack debugger toggle button.

Modifying a Variable
Something which can be quite useful in debugging your code is to change the value of a variable from the
debugger (say, to force an alternate logic path). This is also easily done via the mouse: select the variable name
by highlighting it, then drag and drop it to the Watch window. Here, you can simply change the value.

Disassembly View
Often, when you inadvertently step into a routine for which no debugging information exists, a so called
“Disassembly” window automatically displays. This is a view of the assembly level code, which for most of us
is pretty useless. If you want to see the “step by step” assembly code commands being processed you are in the
right place. To return to the source window, select the “Step Out” function (to jump back out of the current
routine) if needed, and select the “Disassembly” button to toggle the window off again. This should return
to your source code window.

97Chapter 1: Reference Manual Topics
Debugging the Model and Analysis
Debugger Help
We urge you to familiarize yourself with the symbolic debugging environment via the online help provided.
Unfortunately, we cannot provide detailed information about using this symbolic debugger within the scope
of this manual.

Example of Using the Symbolic Debugger on a Linux Platform
The following example shows you how to use the symbolic debugger on the Sun workstation. This is example
is not a tutorial and does not describe all the functions available. See the "Debugging Tools for the Sun
Workstation" manual for more information. This example is general enough to apply to other platforms.
However, the commands and setup are different for each platform.

In this example, a floating point exception was purposely added to the model. Essentially, a divide-by-zero
was added to the code. The model is first built using the debug option. Then, the Initial Condition Analysis
data form was opened, and the analysis was executed selecting the [Debug this analysis] toolbar icon.
The analysis is launched and is automatically put into the debug mode and the debugger window displays.

The Sun debugger has two window panes. The upper pane is the output window, which displays the code.
The lower window pane is the input window. The debugger commands are input into this window.

When first opened, you may get warning messages in the lower window, such as:

Warning: skipping debugging info in “lm_checkout.o”

Warning: can’t find source...

These warning messages are typical and can be ignored.

You want the debugger to run and put you into the model source code file (model_name.f), which contains
the main routine EQMO. So, tell the debugger to stop in the routine EQMO, then run the debugger.

Enter: stop in eqmo

run

This runs through the code until it comes to the subroutine EQMO where it stops.

This is shown in Figure 51 where the code “stopped’ at the first executable line of the EQMO routine.

You can now scroll up and down, select different lines of code that you wish to stop at, and add a “STOP”
flag by selecting the “Stop At” pushbutton. You can also step through the code line-by-line by entering the
following commands:

step <n> performs a single step or n steps if specified, and steps into calls

next <n> same as the step command, but it skips over calls

At any point, you may print out a variable value by entering the print command:

Note: The symbolic debugger is optional software purchased with the compiler. It is not provided
with Easy5, nor is it licensed by Easy5.

Reference Manual
Debugging the Model and Analysis

98
print var where var is the variable name

If you wish to just run through the code without stepping line by line, enter the run command. In this
example, the debugger encountered an abnormal exit, but displayed the message in hex code. The "floating
point error" (FPE) condition was not set. So, the FPE "catch" condition was turned on by entering the
command:

catch FPE this turns on the floating point catch

cont this continues the run

The FPE setting allows the debugger to catch the floating point error.

99Chapter 1: Reference Manual Topics
Debugging the Model and Analysis
Figure 51 Example of a Debugger Catching a Floating Point Error

In Figure 51, the debugger “points” to the line of code that triggers the FPE condition
(SCALED=FLOW/FACTOR). The SCALED calculation fails because FACTOR has a value of zero which
causes a floating point zero. The debugger also print the message:

signal FPE (arithmetic exception) in eqmo at line 97

This is a simple example that only applies to using the Sun debugger. Other debuggers are similar, but have
different commands. For help, consult the appropriate documentation, or online, enter the help command
in the debugger window.

Reference Manual
Deleting Components and Connections

100
Defining the Debugger Tool
There may be more than one symbolic debugger available on your platform. If you wish to use a different
symbolic debugger, put a link in your current directory whose link name is that of the current Easy5 default
and whose target is the location of the new symbolic debugger.

For example, if the Easy5 default is dbx and you want to use one called codeview, then define the variable
WSDEBUGGERNAME as follows:

setenv WSDEBUGGERNAME codeview {C-shell}
set WSDEBUGGERNAME=codeview {Korn shell}

Now when you run Easy5 in the debug mode you will get codeview instead of dbx.

To find out which symbolic debugger you are using, at a command prompt, enter the command:

easy5x -varset

and look for the name WSDEBUGGERNAME. This is the symbolic debugger being used by Easy5.

A list of the symbolic debugger command names for different Linux platforms is as follows:

HPUX: xdb

Sun: “workshop -D”

IBM: dbx

Linux: gdb

Deleting Components and Connections
Easy5 allows you to delete components and connections individually or as a group. The methods for doing
this are different, as described in the following sections.

See also: "Adding Components"
"Components"

Deleting Components

To delete a single component:
1. Select the GN2 component and press Delete.

2. Click the OK button in the Confirm Deletion dialog to delete the component.

3. Before proceeding, add the GN2 component back into your model.

To delete a group of components:
1. Press Shift, and then press and hold the left mouse button and drag it to draw a box to encapsulate

one or more components. Use this method to select the GN and DF components.

2. Release the mouse button. The components darken indicating that they have been selected as shown
in Figure 52.

101Chapter 1: Reference Manual Topics
Deleting Components and Connections
Figure 52 Example of Using a Selection Box to Capture Components

3. Press Delete.

4. Press Cancel in the Confirm Deletion dialog as you do not want to delete these components.

Deleting Connections
In addition to making connections between components in a schematic, you need to know how to delete
unwanted connections. Connections established between two components can be deleted using two different
methods:

 All connections between components can be deleted at once.
 Individual connections between two components can be deleted one at a time.

Deleting All Data Connections
A single connection line can contain one or more data connections. To delete all data connections between
components, select the component connection line and press Delete.

When the connection is deleted, the IN to TF connection arrow in your schematic disappears. This indicates
that all the data connections associated with the connection arrow between IN and TF have been deleted
from the schematic. Before proceeding, reconnect the IN and TF components by selecting the IN component
and then the TF component.

Deleting Individual Data Connections
A single connection line may contain multiple data connections. These individual data connections between
components can be deleted by using the connection data table. For example, use the following steps to delete
the connection between GN2 and SJ.

Reference Manual
Discrete (Digital) System Analysis

102
1. Double click on the connection arrow between GN2 and SJ to open the connection data table. The
connection is shown in the right windowpane under Individual Connections.

2. Select S_Out_GN2 -> C1_SJ, and then click Delete Connection.

3. Click OK to close the table and apply the changes.

Discrete (Digital) System Analysis
See also:"Discrete (Digital) System Modeling"

"Transfer Function of Sampled Data Systems"

Ap. C: Discrete Analysis Techniques

For complete information about the analysis techniques Easy5 uses on discrete systems, refer to Appendix C.
In general, when building discrete models and performing analyses on discrete systems, you do not have to
be concerned with the complexities of how discrete systems are built and analyzed. Easy5 takes care of this
for you.

The exception to this is with transfer function analyses of discrete systems. This is covered in detail in “Transfer
Function of Sampled Data Systems”. The following sections describe some general considerations for performing
discrete system analysis.

Operating Point Considerations
Normally, an Easy5 operating point is defined purely by the value of all initial conditions for states in your
model. For sampled-data systems, this can be slightly different, if the time at which the operating point is
saved is a non-fundamental sampling rate interval of simulated time. In such a case, Easy5 additionally saves
the values of the rates of all active digital states in the operating point file. This is done to allow you to
seamlessly stop and restart sampled-data simulations using the familiar paradigm of an Easy5 operating point
as a valid starting point.

Linear Analysis Considerations
Both time domain analyses (simulations) and the linearized stability analyses (z-plane) may be performed
with sampled data discrete systems. Every discrete component has an input parameter named "TAU" that
defines the sampling rate.

Multi-rate digital models can be build using up to ten sampling rates. For performing linear analyses, the
sampling rates must be integer related; this is not required for performing simulations.

Easy5 does some pre-checking and management of digital and hybrid models. For example, if you set the
sample times such that they are not integer related multiple sampling rates and you perform a linear analysis,
the following error message will be given in the Analysis Listing File:
*** FATAL ERROR *** TO ANALYZE MULTI-RATE DISCRETE SYSTEMS, EACH LARGER
 SAMPLE PERIOD MUST BE AN INTEGER MULTIPLE OF ALL LOWER SAMPLE PERIODS.
 SAMPLE PERIOD <value> IS NOT AN INTEGER MULTIPLE OF SAMPLE PERIOD <value>

To resolve this fatal error, you must set the sample rates (TAU) such that they are integer related.

103Chapter 1: Reference Manual Topics
Discrete (Digital) System Modeling
Integration Method Considerations
If you build a model that contains only discrete components, when performing a simulation, Easy5 will give
you a "notice" that your model only contains discrete components and the integration method will be
changed by Easy5 to the Euler integration method.

The Euler method is the most efficient integration method for purely discrete models. However, if you do
not want the Euler method automatically applied by Easy5, then add an IN Integration component to your
model, and freeze this state. This will trick Easy5 into thinking that the model contains a continuous state.
Thus any integration method you specify will be used. In addition to this, for multi-rate sampling systems,
Easy5 will change the integration "Time Increment" value to match the nearest multiple of the fastest
sampling rate.

For example, if you have a multi-rate sampling system with .01, .05 and .20 sampling times and you set the
"Time Increment" field to a value of .015 in the Simulation Analysis Data Form, Easy5 automatically resets
this value to .01 and warns you of the Analysis Listing File change with the following message:
*** NOTICE *** SIMULATION TIME INCREMENT TINC OR TINC2 IS INCOMPATIBLE WITH SAMPLE
PERIOD DIVISOR TAU0.
PRINT/PLOT PARAMETERS AND TINC/TINC2 HAVE BEEN REDEFINED FOR THIS SIMULATION AS
FOLLOWS: {... list of new values ...}

The new simulation parameters will be listed. In this example, the TINC parameter will automatically be
reset to.01.

Discrete (Digital) System Modeling
See also "Discrete (Digital) System Analysis"

Ap. C: Discrete Analysis Techniques

The Easy5 General Purpose Library contains several components used to model sampled data effects,
including several forms of digital filters, a pure delay, and a zero order sample and hold. These components
can be cascaded to form higher order digital filters, or used in conjunction with user-defined Fortran and
LIbrary components to create a customized form of a digital filter.

In this document, the terms discrete and digital are used interchangeably. Discrete usually refers to a discrete
states and mathematical algorithms, whereas digital usually refers to hardware systems such as filters and A-
to-D converters. In this context, components may be referred to as either discrete or digital, whereas the state
is referred to as a discrete state.

Digital Models
Discrete components can be connected into any part of your model. All discrete components have a zero
order sample and hold dynamic element placed on the output signal, so that they can "communicate" with
any other component in your model. When connecting one to another discrete component with the same
sampling rate, this sample and hold will "drop out" without introducing any delay. Both time domain
analyses and the linearized stability analyses (z-plane) may be performed with sampled data systems.

Every discrete component has an input parameter that defines the sampling rate. Micturate digital models
can be built using up to ten sampling rates. Most important, submodels can contain components sampled at

Reference Manual
Discrete (Digital) System Modeling

104
different rates! Unlike other similar software tools, there is no requirement for placing all digital components
sampling at one rate into one submodel. For performing linear analyses, the sampling rates must be multiple
integer related; this is not required for performing simulations.

Hybrid Models
A hybrid model is a model that contains both analog (continuous) and digital (discrete) systems. Discrete
components can be connected to any part of your continuous plant model by simply placing the appropriate
component into your schematic and making the connection. Also, any given submodel can contain
components sampled at different rates.

Figure 52 gives an example of a hybrid system model using continuous and discrete components.

Figure 53 Example of a Hybrid System Model

A discrete component can also be vectorized, but can only have one sampling rate associated with it. Within
the model, however, up to ten integer related sampling rates can be included. Sampling rates are always
defined by the physical quantity name TAU.

Note: Easy5 automatically inserts a zero-order sample-and-hold between continuous and discrete
components, at the sampling frequency set by the discrete component. For added clarity, the
user can add a zero-order sample-and-hold component called “SH.”

105Chapter 1: Reference Manual Topics
Discrete (Digital) System Modeling
Discrete System Modeling Using Fortran, C and LIbrary Components
When modeling digital systems using Fortran, C, or LIbrary components, additional concerns generally
include the following:

1. Ensuring the component models the digital behavior correctly.

2. Maximizing the computational efficiency of the component.

Before continuing the explanation of discrete system modeling, it is important to review some of the terms
which will be used in describing this method of modeling.

Delay State Declaration Statement
For every delay state that you define in a code component, you must also include a corresponding delay state
declaration statement in the code body. This declaration statement has the following format:

NEXT VALUE OF, state name = mathematical expression

The state name is the name of the state as it is displayed in the data table.

In addition to the NEXT VALUE OF command, you must also define the sample period of the delay state.
This is explained in "Setting the Sample Period".

Sample and Hold State Declaration Statement
For every sample state that you define in a code component output section, you must also include a
corresponding sample state declaration statement in the code body. This declaration statement has the
following format:

VALUE OF, state name = mathematical expression

The state name is the name of the state as it is displayed in the data table.

In addition to the VALUE OF command, you must also define the sample period of the sample and hold state.
This is explained in "Setting the Sample Period".

Setting the Sample Period
There are two methods of setting the sample period. The first, and perhaps easiest method is as follows. In
any Fortran, C, or Library component with a delay or sample state, you specify the sample period of the state
using the SAMPLE PERIOD OF command.

For example, if a delay or a sample state is named “xxx”, and the sample period of that state is named “yyy”,
to set the sample period, enter the following command before the occurrence of the “value of ” or “next value
of” statements for that state:

SAMPLE PERIOD OF, xxx = yyy

Note: TAU is an Easy5 reserved word. You may not name any component input or output name
starting with TAU.

Reference Manual
Discrete (Digital) System Modeling

106
In this example, the name of the sample period yyy must be added to the Component Data Table as an input
parameter, and the state xxx must be added as a state variable. The sample period input can be defined as a
constant, or driven by the output of another component.

Matching TAU Method (obsolete)
An obsolete method (to explicitly defining a sample period using the SAMPLE PERIOD OF definition) is to
simply define a “matching” TAU input to the code component to the corresponding state name.

The matching TAU input parameter must be named such that when you replace the first 3 characters of the
state name with TAU, that is the “matching TAU input” name. As a parameter, the TAU parameter can be
driven by the output of another component, or set to constant value.

For example, if a delay state is named DelCont02, then the associated matching TAU parameter should be
named TAUCont02.

Discrete Code Example
Whereas an analog equation is executed continuously with time, a digital equation, by definition, is executed
only at appropriate sampling times. Sampling times are defined as “official” calls to the model equations
occurring at integer multiples of the “lowest common divisor of sampling periods”, or smallest sampling
period (which Easy5 calls TAU0).

If we define a User Code (or LIbrary) component which represents discrete, or sampled, behavior, we might
conclude that all equations in that component have been automatically “marked” by Easy5 as being digital.
Unfortunately, this is not the case.

The only equations that Easy5 considers to be digital, that is, executed only at appropriate sampling times,
are those which have been declared as discrete states. These equations, called discrete state declarations, are
those prefaced by the Easy5 commands NEXT VALUE OF or VALUE OF. All other equations are executed
continually.

A typical digital component contains one or more digital state declarations, and additional code or logic used
to define the derivatives for these declarations. However, to prevent any confusion, let us refer to any
equations or logic used to define the rates of digital states as digital setup equations.

Thus, a typical digital Fortran component would have the following structure:

Note: This obsolete method is provided only for the reason of backward compatibility.

Note: More than one discrete state can be sampled at the same sample period TAU. To set this up
using the matching name method, name the corresponding discrete states such that they
have the same name expect for the first 3 characters. For example, if three discrete states are
sampled at the same sample period TAU1MIL, then name all three states with 1MIL as the
last four characters (e.g., STA1MIL, STB1MIL, STC1MIL).

107Chapter 1: Reference Manual Topics
Discrete (Digital) System Modeling
C States names:
C sample state: Position
C delay state: varx
C Parameter names for sample times (TAU):
C sample state tau: Pos_tau
C delay state tau: delay_tau
...
 (digital setup equations)
...
SAMPLE PERIOD OF, Position = Pos_tau
SAMPLE PERIOD OF, varx = delay_tau
VALUE OF, Position = <derivative_expression>
NEXT VALUE OF, varx = <derivative_expression>

The correctness of your digital components (and their interface with the rest of your model) is always
preserved through the use of Easy5 delay and sample-and-hold states. These states, which are updated only
at appropriate sampling times, ignore the digital setup equations (used to calculate their "rates") at all times
other than sampling times.

This leads us to two important conclusions:

1. Only state variables may be used in implicit or recursive equations. That is, the only "saved" values
(variables defined using values calculated during previous calls to the model) allowed on the right-
hand side of an equals (=) sign are state variables. If this rule is not followed, you will most likely get
incorrect results.

2. For purely digital User Code (or Library) components, calls to the model at non sampling times cause
superfluous execution of the digital setup equations. However, because these equations are used only
to define the rates of the digital states (and are thus not used at non sampling times), correctness is
still guaranteed. Therefore, this is only a factor if you are interested in maximizing the efficiency of
your code.

Skipping Execution of Digital Equations at Non Sampling Times
This section is devoted to methods of skipping execution of the digital setup equations at non sampling times.
If you have a considerable block of these equations, the following information may be of interest to you. If,
on the other hand, you only have a few lines of code, you can skip the remainder of this section.

First, you must weigh the impact of adding one or two IF tests to your component against the extraneous
execution of digital setup code. Obviously, if you have only a handful of equations in your component, the
additional IF tests required to jump around these digital setup equations for non sampling intervals would
not result in a good execution time improvement. Let us assume that you have a large block of digital setup
code and you want to jump around it for non sampling times. For single rate sampled data systems this simply
involves adding a test on the Easy5 global variable IDELAY. It has values as indicated below:

IDELAY Type of Model Call Indicated

0 For non sample times

1 For "official" sample times

-1, -2 For "test" sample times (used to calculate discrete linear model matrices)

Reference Manual
Discrete (Digital) System Modeling

108
Simply add a test using IDELAY which jumps around your digital setup code for non sampling times
(IDELAY = 0). Please note that you must allow execution for “test” sample period model calls (IDELAY < 0),
as these are used for discrete linear model calculations. This is in fact exactly what occurs internally for the
Easy5 digital state declarations.

For example, you could use the following code in a Fortran component:

C ADD PARAMETERS = TAUONE,...

C ADD STATES = SAMONE/SAMPLE, DELONE/DELAY,...

C FORTRAN STATEMENTS

IF (IDELAY .NE. 0) THEN

...

...

(digital setup equations)

...

...

ENDIF

SAMPLE PERIOD OF, SAMONE = TAUONE

SAMPLE PERIOD OF, DELONE = TAUONE

VALUE OF, SAMONE = ...

 NEXT VALUE OF, DELONE = ...

Note that both methods (explicit use of a SAMPLE PERIOD OF command, and the matching TAU method)
were used in this example to define sampling periods for the two digital states.

For multi-rate sampled data systems, you have additional considerations to make. If you merely treated this
case as a single rate model, you would have the digital setup equations executed at every (smallest) sampling
period, TAU0. Thus, for sampling periods longer than this you would still be executing unused equations.

You can, however, add an additional test which will tell you whether or not the correct sampling time for a
particular component has arrived. You must again weigh the computational expense of additional logic
against unnecessary execution of the digital setup code at every sampling time.

Assuming you want this additional logic, you must add a test to determine if the current sampling period is
the correct multiple of the smallest sampling period, TAU0, also known as the fundamental sampling period.
This is most easily accomplished using the Easy5 function EZTAUS, which takes an argument (<tau>) and
returns either 0 (false) or 1 (true) depending whether or not the current TIME is a sampling interval <tau>.

For example, consider the following Fortran component:

C *** PARAMETERS = TAUONE,...

C *** STATES = SAMONE/SAMPLE, DELONE/DELAY,...

C FORTRAN STATEMENTS

IF (EZTAUS(TAUONE) .EQ. 1)THEN

...

...

109Chapter 1: Reference Manual Topics
Documenting and Printing the Model
(digital rate update equations)

...

...

ENDIF

NEXT VALUE OF, DELONE = ...

VALUE OF, SAMONE = ...

In conclusion, while model correctness is always preserved through the use of Easy5 digital state declarations,
extraneous model execution of large blocks of digital setup equations can be avoided through the use of
additional logic.

Documenting and Printing the Model
See also: "Graphic Files, EMFs, and PostScript"

"Print Options"

Generating a Model Document File
You may generate a document of the model by selecting File > Document Model to display the menu shown
in Figure 54.

Figure 54 Generate Model Document File

There are several submenu options which allow you to generate either a text document, or an HTML
document, and/or open the created documents. Note that this process requires a Model Building license.

The Display menu items are active only when a Model Document file already exists, otherwise they are
grayed out.

Model HTML Document
To generate and display an HTML formatted document file, select File > Document Model > Create &
Display HTML. This feature writes an HTML formatted file containing pertinent data on each component.

Reference Manual
Documenting and Printing the Model

110
The component are listed alphabetically, and HTML tables are used to display the data contained in the
Component Data Table. Tabular data is listed in tables, and Fortran and C component code is also listed.

When creating HTML model document files, Easy5 automatically creates a subdirectory named
<model_name>.ezmd/documents to store these HTML files in. This keeps the potentially many HTML files
together in one sub-directory. At least one HTML file is created for each component and submodel. The
main Model Document file is named <model_name>.html. When requested, the HTML file is automatically
opened using your default web browser.

You can also generate an HTML document of a model external to the Easy5 GUI by entering the following
at an Easy5-enabled command prompt:

easy5x -docmod -html <model_file_or_path>

Model Text Document
To generate and display an ASCII formatted text document file, select File > Document Model > Create &
Display Text. This feature writes an ASCII formatted file containing pertinent data on each component.

The file alphabetically lists every component in the model, annotated with the data found in the Component
Data Table. The data listing includes the component name and title, input and output names, user-defined
names, and the corresponding values, description and units. Component connections are also listed. Tabular
data is listed in columns, and Fortran and C component code is also listed.

When this option is selected, Easy5 writes to a local file named:

<model_name>.txt

When requested, the text file is automatically opened using the Easy5 Editor.

You may also document a model external to the Easy5 GUI by entering the following command at any Easy5-
enabled command prompt:

easy5x -docmod <model_file>

This will write the output to the screen. To write the output to a file, use the “-o” option to specify the named
output_file as follows:

easy5x -docmod <model_file> -o <output_file>

A single component may be documented by entering the following "docmod" option command:

easy5x -docmod <model_file> cnxx

where, cnxx is the 2 to 4 character component name that you wish to document.

Note: On Linux systems, the environment variable EASY5_BROWSER must be set to the
command that launches a web browser.

111Chapter 1: Reference Manual Topics
Exporting an Easy5 Model as a MAT EMX Function
Exporting an Easy5 Model as a MAT EMX Function
One Build menu option in Easy5 lets the user export the model as a Matrix Algebra Tool (MAT) compatible
function. Select Build > Export Model as. . . > MAT EMX Function.

Figure 55 Export Model as MAT EMX File

MAT function “ezmodel”
This command can be used in any MAT script: ezmodel(“Easy5 command”).

Examples of command syntax:

ezmodel(“simulate”) runs a simulation
fueltemp =ezmodel (“get value of, max_fuel_temperature”)
 returns the result to MAT

Easy5 Window
The Easy5 window is shown in Figure 56. This window is similar on both Linux and Windows systems. The
window is made up of six main parts: the description lines, model info, menu bar, control panel, schematic
window, scroll bars and the message line. Using your mouse, and to a limited extent your keyboard, you work
in this window to construct your Easy5 model.

Reference Manual
Easy5 Window

112
Figure 56 Easy5 Window

The following sections describe the parts and functions of the main window, and how to interact with it.

Description Lines
The title barof your Easy5 application window, as shown in Figure 57, contains the name of the model (mass),
the directory where the model is located (that is, C:\Easy5data\username), and the version number of
the application (Easy5 2021.1).

The model name is entered in the Select Model File to Open dialog when you create a new model. The model
name you enter is used to name all files associated with that model. The first time you save the model, the
version number appended to the new model is 0, such as mass.0. In general, when you save any version of
a multi-freshened model, Easy5 creates a new copy of the model with a version number that is one greater
than the highest version of the model.

113Chapter 1: Reference Manual Topics
Easy5 Window
Model Info
A model can have an associated text file named <model_name>.info.txt, used to describe the model and
provide information about the model. Selecting File > Model Info, or clicking on the “i” icon in the tool bar
opens a rich-text editor, which allows you to add and store information about the model. Similarly, other
formats are supported with the search order as: <model_name>.info.htm and <model_name>.info.pdf.

Menu Bar
The menu bar for Easy5 is located below the description lines and contains the following pull-down menus:

 File Edit View Options Library Build Analysis Submodel Help

Tool Bar
The tool bar outlined in Figure 57 helps to orient you in your model. There are three drop down menus for
you to identify the type of analysis, the name of the model, and an indicator of the drill-down level. Other
icons in this tool bar use typical Windows interface icons, such as zoom and enzyme, open, save, and so on.
To determine the use of an icon, place your mouse over the icon and a dialog will display indicating its
function.

Dockable Add Component WIndow
This window lets you view and access a list of all libraries and their components. The first time you open
Easy5 and begin to build your model, you will need to open this window using Edit > Add Component.
Generally this window remains open on the schematic until all model components have been added. When
you reopen the application, if the dockable window was open, it will display in the same manner as previously
set.

This window is divided into three scrollable areas: the type of library, the library group, and the components.
The top windowpane lists the available libraries. The libraries listed in your window will depend on whether
you are licensed to use a particular library. See Ap. A: License Management for more information.

Libraries contain components for a specific application. For example, gas dynamics components are
contained in the gd library. Some libraries contain a large number of components. To facilitate the
management of these components, the libraries are further divided into groups. Groups within a selected
library are listed in the second window pane.

Scroll Bars
You can two-dimensionally move the schematic window over the schematic pad to view different parts of the
block diagram. One way of moving the schematic window over the schematic pad is by using the scroll bars
located on the bottom and right side of the schematic window.

Reference Manual
Easy5 Window

114
Message Line
The Easy5 message line is located at the bottom of the Easy5 window. Messages on this line inform you about
actions and processes, as well as why a certain process may not be working. The arrow buttons at the end of
the message line allow you to scroll up and down through messages that have been displayed during Easy5
session.

Schematic Window
The schematic window is the largest part of the Easy5 work area. It is the large rectangular area of the display
that takes up about 80 percent of your screen.

The schematic pad is a two-dimensional area upon which a block diagram is constructed. You can move the
window closer to or farther from the schematic pad, in effect zooming in and out on different parts of the
block diagram by selecting the [Zoom In] and [Zoom Out] control panel buttons or icons.

Working with Easy5 Windows
When you work with Easy5, you often will have a number of windows open. Many commands open new
windows allowing you to fill out data forms, view plots, or print output data. As a result, you may have many
super imposed layers of windows, as shown in Figure 57.

115Chapter 1: Reference Manual Topics
Easy5 Window
Figure 57 Easy5 Window With Multiple Windows

Enlarging a Window
In most cases, you can enlarge an application window to fill the entire screen. This is a useful feature for
enlarging the main Easy5 window. To enlarge a window to its maximum size, select the “maximize button”
shown in Figure 56.

Note: Windows: Select the button in the upper right corner of the window. This will
“iconize” the window and place it in the taskbar.

Reference Manual
Eigenvalue Sensitivity Analysis

116
Closing a Window
One way to quit an application is to close the application window. All Easy5 windows have a menu item or
push button that is used to close a window. Typical menu items used to close a window is "Exit". Typical
pushbuttons are: OK, Cancel, or Done. Selecting any of these items will close the window.

Eigenvalue Sensitivity Analysis
See also: "Analysis Data Form"

The Eigenvalue Sensitivity analysis measures the sensitivity of the system eigenvalues to a change in a specified
system parameter. It is the ratio of the percentage change of the eigenvalue to the percentage change of the
parameter for which the sensitivity is to be measured.

This type of analysis offers you an efficient method for assessing your model’s sensitivity to parameters, since
there are times when obtaining good values for parameters in your model is at best an approximation. This
is fine, unless your model is overly sensitive to them, which is something that you should be aware of.

This analysis is also a more general way of showing how your system eigenvalues change with changes to one
system parameter. This can be helpful when you are trying to "move" an undesirable eigenvalue. Of course,
this requires an understanding of your model, at least to narrow down the list of "candidates" or possible
parameters to a smaller, but meaningful list.

Setting up an Eigenvalue Sensitivity Analysis
The Eigenvalue Sensitivity analysis is setup and executed with the Eigenvalue Sensitivity Analysis data form.
To access this data form, select Analysis from the main menu, then select Eigenvalue Sensitivity... from the
Linear menu. Figure 58 shows the Eigenvalue Sensitivity data form with all data fields and options.

Note: Windows: Select the button in the upper right corner of the window. This will resize
the window to the maximum size. Selecting it again will resize the window to it’s previous
size.

Note: On Windows, you can sometimes close a window by selecting the button in the upper
right corner of the window.

Caution: On Linux systems, do not close any Easy5 window using the window manager’s control
menu box. Window managers provide a control menu box, usually displayed in the left box
of the title bar. Selecting this control menu box will drop down a menu that contains the
“Close” command used to close the window. Do not use this method to close a window.

117Chapter 1: Reference Manual Topics
Eigenvalue Sensitivity Analysis Method
Figure 58 Eigenvalue Sensitivity Analysis Data Form

To save the settings in this data form, and to fill in the title, time and initial operating point data fields, refer
to the section “Analysis Data Form”.

Defining the Eigenvalue Sensitivity Parameter
The first task in performing this analysis is to identify the parameter whose effect on the eigenvalues you want
to measure. This parameter, called the "eigen parameter", must be an Easy5 parameter in your model that is
defined in the "Eigen Parameter" data field. You define this parameter by typing a parameter name directly
into the "Eigen Parameter" data field, or by using the "Pick" option to specify the eigen parameter.

Eigenvalue Sensitivity Analysis Method
The equations which describe the sensitivity measurements made during the Eigenvalue Sensitivity analysis
are as follows:

where:

Note: The Eigenvalue Sensitivity analysis does not work with models that contain discrete states,
i.e., sampled data systems.

Sri = Sensitivity measure of real part of ith eigenvalue to change in parameter P

Swi = Sensitivity measure of imaginary part of ith eigenvalue to change in parameter P

ri = Nominal value of real part of ith eigenvalue

Sri
Swi

1
r ′i
ri
-----–

1
p′
p
----–

2

----------------------= = Swi

1
w′i
wi
-------–

1
p′
p
----–

2

----------------------=

Reference Manual
Executable Model

118
Executable Model
See also: "Executable Output Files"

"Linking External Code"

Before you run any type of analysis, your graphical model must be converted into an executable program.
The executable model, or “the executable”, is a Fortran subroutine (called SUBROUTINE EQMO) or
C function, representing your system that has been compiled and linked into the Easy5 analysis routines.

Executables are generated by the executable model builder program and are derived from the generic Easy5
block diagrams, and from any code that might be contained in User Code and/or Library components.

When you run an analysis, the executable is called by the main analysis program. Easy5 then accesses the
model information in the component data tables and lookup data tables that contain the specific data you
have defined for your model.

wi = Nominal value of imaginary part of ith eigenvalue

p = Nominal value of parameter for which sensitivity measure is being calculated

' = Prime indicates perturbed values of parameters and eigenvalues

i = 1,2,3, ... ,n and n = model order

119Chapter 1: Reference Manual Topics
Executable Model
The Build menu is used to create the executable model. The Build menu options are shown in Figure 59.
These options are reviewed in the following sections.

Figure 59 Build Menu

Create Executable
You create an executable after you have assembled your model. To generate an executable model, select Create
Executable (Ctrl+B) from the Build menu. Your model will automatically be saved for you as a first step in
creating the executable. (If you have already saved a version of your model before selecting Create Executable,
Easy5 will not save it again.) While the executable is being generated, the "Create Executable in progress..."
message will appear in the message line.

Note: The Build menu is only available when a Model Building license feature has been checked
out.

Reference Manual
Executable Model

120
Only one executable model can exist for a given model regardless of the number of versions there are for that
model. As long as components are not added to or deleted from your model or any connections changed, you
do not have to recreate the executable. In general, you do not need to concern yourself with whether or not
the executable is compatible with the version of the model you are working with. Easy5 always keeps track of
executable and model version numbers, and warns you when incompatible models exist before an analysis is
attempted.

Link External Object
Before creating the executable model, all external code called from within the model must first be compiled
and linked. The Link External Object.... menu item is used to setup and link all external code. For
information on how to link external code, see "Linking External Code".

Solve Implicit Loops
If your model contains implicit loops, you may resolve these loops by setting the Solve Implicit Loops option.
For information on solving implicit loops see “Implicit Model”.

Force Explicit Typing
You may force the compiler to trap all undefined variables by selecting the Force Explicit Typing option. This
forces the user to explicitly type (define) all variables. This is a recommended programming practice.

Check for Duplicate Names
By default, this setting is on, and is used to verify that all input/output names are unique before a model
executable is created.

Debug Mode
This option is used to generate the executable model with debug statements. Selecting this option allows you
to run your system’s symbolic debugger from Easy5 (during an analysis). There are times when the standard
print and plot output from Easy5 is not sufficient for isolating a problem that is occurring in your model. For
these cases you should use the system symbolic debugger.

When you run with the symbolic debugger, you can set a break point in subroutine EQMO (the Fortran
subroutine that represents your model), and then step through the code and monitor execution and print
intermediate results. You can also set variables to different values if the results of a calculation are incorrect.
Since there is significant variation in the commands for the symbolic debugger between the different

Note: As the executable is being generated, you have control over the workstation and can continue
to perform other operations. When the executable process is finished, the message
“Executable has been created” will be displayed in the message line.

121Chapter 1: Reference Manual Topics
Executable Output Files
platforms, please consult the reference manual or man page for your platform. For information on how to use the
debugging feature, see “Debugging the Model and Analysis”.

Stop Create Executable
Selecting this option will kill the Easy5 background process and stop the building of the executable model.

Executable Output Files
Easy5 produces three types of output files relating to executable model creation: the model generation listing
file, the executable source file(s), and the executable error file. These files are discussed this section.

See also: "Executable Model"

Create Executable Process
The purpose of the "Create Executable" process is to take your graphical model and generate an executable
file. In doing, Easy5 creates several files shown in Figure 60. First, intermediate files (<model>.ezmod and
<model>.ezmgl) are built in the Easy5 language. The .ezmod file is seldom needed and may be deleted. Easy5
is a code generator. It takes the Easy5 model files and builds source code (<model>.f or <model>_c.c), and
then links user-defined external object files and builds the executable file (<model>.exe).

Figure 60 Model Files Created During Save and Create Executable

If the Create Executable process fails, an error file is generated (<model>.ezerr). You should make a habit of
reviewing the executable source file. This is the source code that defines the graphical model in either Fortran
or C code. These files are all explained in the sections that follow.

Reference Manual
Executable Output Files

122
Model Generation Listing File
Every time you create an executable model, a model generation listing file for that model is updated. The
model generation listing file is a primitive, nongraphic version of your model that is read by the Easy5
executable model builder program. (Easy5 creates this file for you automatically from your on screen
graphical model.) There is only one model generation listing file for any given model in your account. The
naming convention for this file is: <model>.ezmgl. Every time you recreate an executable this file is over
written.

After you create an executable you can examine the model generation listing file. To examine the model
generation listing file, open the Build > Display Model Generation Listing.

The primary purpose of generating this file is to warn you if an explicit model can not be built. If this occurs,
the following warning will be written in the message line:

Error occurred during model generation phase

Any time you get this message, you should examine the model generation listing file. If for example, the
model generator fails to build an explicit model because of one or more implicit loops, a FATAL ERROR is
printed at the bottom of this file. An example of this error message is:
*** FATAL ERROR ***THE FOLLOWING CONNECTIONS FORM AN IMPLICIT LOOP. ALL CONNECTIONS
BETWEEN ANY TWO COMPONENTS IN THIS LOOP MUST BE REMOVED OR REPLACED BY STATE OUTPUTS.IF
OTHER IMPLICIT LOOPS EXIST, THEY CANNOT BE DETECTED UNTIL THIS LOOP IS REMOVED FROM THE
MODEL.

 S_Out_LE FROM COMPONENT LE IS AN INPUT TO THE FOLLOWING SORT BLOCK OF COMPONENT
SJ

Before proceeding, you must break the loop that is causing the implicit model. For more information, see
“Implicit Model”.

Executable Source File
The executable source file contains the compilation listing for SUBROUTINE EQMO, the Fortran model
of your system. If a compilation or run time error occurs, you will be provided with the EQMO source line
number that caused the problem and you must look in this file to locate the problem. The naming convention
for this file is: <model>.f.

After you create an executable, you should examine the executable source file. Warning messages that require
your attention may appear in this file.

To examine the executable source file, select the Build > Display Executable Source File. It is important that
you analyze the executable source file and become familiar with the structure of the subroutine EQMO. A
portion of a sample executable source file is shown in Figure 61.

The first section is created by Easy5 to define all the common variables and data types. This is followed by
the Easy5 components, which are called as Fortran subroutines. The code from Fortran components is loaded
directly into the subroutine EQMO. The components and the Fortran component’s code may be sorted and
placed in an order required to obtain an explicit model.

If your model contains C code components, Easy5 takes the C code from each C code component, creates a
C function, and places all of these functions into a single file called <model>_c.c. This file gets compiled and

123Chapter 1: Reference Manual Topics
Executable Output Files
linked with other Easy5 files to create the final executable file. To examine the C code source file, select the
menu Build > Display C Source File. See “Steady-State Analysis Method” for more information on the Easy5
Text Editor.

Figure 61 Sample Listing of the Executable Source File Using the Text Editor

Reference Manual
External (Environment) Variables

124
Executable Error File
One phase of executable creation involves the compilation of the Fortran subroutine (SUBROUTINE
EQMO) which represents your system. Easy5 will warn you when errors occur during the compilation of this
subroutine, and you must examine the executable error file to find out what went wrong. In most cases,
compilation errors occur because you have made mistakes in the User Code and/or Library component code
used in your model. The naming convention for this file is: <model>.ezerr.

Once your model has been successfully compiled, it is linked with the Easy5 analysis routines and any external
object files referenced in any User Code and/or Library components to form an executable model. If errors
occur during the link phase, Easy5 will notify you and you must examine the executable error file to find out
what went wrong. In most cases, link errors occur due to undefined external references in User Code and/or
Library components in your model.

If errors occurred during the compilation of your executable file, you can examine the executable error file by
selecting Build > Display Executable Source File, which opens a read only display area containing the source
file that you view using the scroll bars.

External (Environment) Variables
External variables (commonly called environment variables) are used to setup special conditions prior to
running Easy5. The syntax used to set environment variables depends on the type of shell you are using. The
most common shells are the C, Bourne, and Korn shells, as well as the MS DOS Command Prompt in
Windows. The three operations used to manage environment variables are: setting an environment variables,
deleting an environment variable, and displaying the current values of an environment variable. The
appropriate command syntax for each of these operations is given below for each type of shell.

To set an environment variable:

Note: Further information about the compilation and linking of your model is available in the
Build Log (file easy5_build.log). For analysis information, check the Analysis Log (file
easy5_analysis.log). These log files can be displayed using the menu items Build >
Display Build Log... or Analysis > Display Analysis Log... menu items, respectively

Note: If compilation errors do not occur, this file will be empty.

Note: Windows: In place of commands entered at a command prompt, you can also access and
modify global environment variables by selecting Control Panel > System > Environment.

125Chapter 1: Reference Manual Topics
External (Environment) Variables
To delete an environment variable:

To reference (display) the current value of an environment variable:

To display the value of all environment variables:

A list of the Easy5 environment variables being used is obtained by the -varset option. To use this option enter
the following at a command prompt:

easy5x -varset

For shell type . . . Use the command syntax . . .

C setenv <env_variable> <value>

Bourne and Korn export <env_variable>=<value>

MS DOS Command Prompt set <env_variable>=<value>

Note: For Linux systems, if a <value> contains special characters, such as a slash (/) a blank space,
or a period (.), the <value> should be enclosed by double quotes ("). When defining
Windows environment variables, do not put quotes around the values, even if it contains
multiple values with blank space separators.

For shell type . . . Use the command syntax . . .

C unsetenv <env_variable>

Bourne unset <env_variable>

Korn <env_variable>=

MS DOS Command Prompt set <env_variable>=

For shell type . . . Use the command syntax . . .

C, Bourne, and Korn echo $<env_variable>

MS DOS Command Prompt echo %<env_variable>%

For shell type . . . Use the command syntax . . .

C, Bourne, and Korn printenv or env

MS DOS Command Prompt set

Reference Manual
External (Environment) Variables

126
A list of the most commonly used Easy5 environment variables is shown in the following tables. To obtain a
complete list enter the following command at a command shell prompt:

easy5x -vars

Table 1-11 Library search path control

Variable Value Description

EASY5_USER_LIB <directory_name> Editable library directory for personal use.

EASY5_GROUP_LIB <directory_name> Read-only library directory for group use.

EASY5_SITE_LIB <directory_name> Read-only library directory for site-wide access.

EASY5_FIRST_LIB <xx> Forces the xx library to be searched first, instead of the
gp library, when adding a component.

EASY5_IGNORE_LIB <aa bb xx ...> If set, will not open the libraries in this string.

EASY5_SELECT_LIB <aa bb xx ...> If set, open only libraries in this string (ex: "ec hy").
Note: the gp library is always opened.

EASY5_OBJECT <filenames> Defines object code to be linked (space delimited).

WSLIBDIR <library dir name> Used to set an alternate Easy5 library directory.

Table 1-12 File Space Quota Control (be careful if you reduce these!)

Variable Value Description

WSANLSPACE <#> Minimum megabytes for analysis (default = 3).

WSEXESPACE <#> Min. megabytes to create executable (default = 6).

WSMFSPACE <#> Min. megabytes for model save (default = 2.5).

127Chapter 1: Reference Manual Topics
External (Environment) Variables
Table 1-13 Options for display control

Variable Value Description

WSNOAUTO_RESULTS on Set initial state of menu selection: "Options-
>Automatic Results Display" to off (output data
will not be automatically displayed).

WSCONCOLOR <x> Sets connection line color, where x defines the
color with an integer 0 - 7 as follows:

0 = black (def)
1 = red
2 = green
3 = blue
4 = cyan
5 = yellow
6 = magenta
7 = white

WSDEBUG on Activates debugging of the GUI and prints debug
messages to the window from which Easy5 is run.
This dramatically slows down Easy5, and should
only be used for GUI debugging. When finished
"unset" this variable.

Table 1-14 Connection options and label options

Variable Value Description

WSALTCONNECT on Allows for partial default connections

WSALTCONLIB <libs> For the given library or libraries <libs>, the
port connection logic reverts back to Easy5’s
v5.x method -- that is, the port connection
table does not appear when ambiguous port
connections are being made.

CNT_LABEL_OFF on New connections will not be labeled.

CNT_LABEL_HEAD on Default labels appear at "head" end of
connection.

CNT_LABEL_VERTICAL on Default labels drawn vertically.

Reference Manual
External (Environment) Variables

128
CNT_LABEL_BELOW_LEFT on Default labels drawn below and/or to the left
of the connection.

HIDE_CNT_OUTPUT_LABELS on Do not show unported connection labels.

HIDE_CNT_SUBMODEL_LABELS on Do not show labels for off page connectors in
a submodel.

SHOW_CNT_PORT_LABELS on Show ported connection labels.

Table 1-15 Background (Easy5) process options

Variable Value Description

auxfile <file_name> Name of file that contains Easy5 format
auxiliary input data.

ezdebug on If set to anything, compile with debug options
and run debugger.

copt <compile options> C compilation options -- overrides default
setting

ftnopt <compile options> FORTRAN compilation options -- overrides
default setting

bindopt <load options> options to loader (ld) -- overrides default setting

WSDEBUGGERNAME <debugger name> The name of an alternate debugger for source
level debugging.

xtralib <library or object file> Adds this object or library last in the linking
sequence

Table 1-16 Model generation input modification

Variable Value Description

WSMODAUX1 <file_name> Will include named file before model
definition in .mod file

WSMODAUX2 <file_name> Will include named file after model definition
in .mod file

Table 1-14 Connection options and label options (continued)

Variable Value Description

129Chapter 1: Reference Manual Topics
Fortran Component
For a more complete list of available environment variables, please use the shell command “easy5x -vars”.

Fortran Component
See also:"C Component"

"Compiling External Code"

"Linking External Code"

User Guide, Chapter 5 - Code Components

Fortran code is added to a model using the Fortran code component. The Fortran code component is accessed
from the Add Components window, by selecting the “Fortran” button from the bottom of the window, then
CLICK-L to drop the Fortran code component onto the schematic. The Fortran code component is named
FO<xx>, where, <xx> is the component designator.

Complete information on how to use the Fortran code component to add Fortran code to your model is given
in the User Guide, Chapter 5 - Code Components. The user guide describes how to add Fortran code variables to
the data table, and how to add and edit the code in the code editor. This section is intended to give additional
information specific to the Fortran code component.

Forced Explicit Typing
Explicit typing, or strong typing, requires all variable names to be explicitly typed, that is defined, which is
considered a good programming practice. This is also the convention for most other modern programming
languages such as C. This programming practice is very useful to help you avoid making typing errors.

To turn on this option, select Force Explicit Typing from the Build menu option. This forces Easy5 to write
an IMPLICIT NONE statement to your model executable source file. This also forces you to explicitly declare
all local variables (non-Easy5 variables) in your code using one or more Easy5 DECLARATIONS commands.

Table 1-17 Miscellaneous options

Variable Value Description

EASY5_BROWSER <path> Set to the path of the HTML browser
program (for Linux only)

EASY5_PDF_READER <path> Set to the path of the Adobe Acrobat Reader
program (for Linux only)

EZ_NO_CONFIRM true Set to true to skip Easy5 shell-script prompts
(for advanced users only)

WSPLOT_AUTO_SEL_LO true If set, plotter will automatically select layout
file.

EASY5_XCOMP_DIR <directory> Override the default Easy5 "xcomp" directory
path (the top-level extensions directory path
which is "EZHOME"/xcomp)

Reference Manual
Fortran Component

130
Otherwise, a Fortran compilation error occurs when building your model executable. It is strongly
recommended that you select this option to further reduce the opportunity for programming errors in your Easy5
user-defined code components.

Example of Forced Explicit Typing

Assume that you have a Fortran component with one declared Easy5 input, IN1, one declared Easy5 output,
OUT, and three local variables called TVAL1 (real), TVAL2 (real) and IVAL (integer).

Your Fortran component code might look something like this:

DECLARATIONS, REAL*8 TVAL1, TVAL2
DECLARATIONS, INTEGER IVAL
TVAL1 = MAX(IN1, ZERO)
TVAL2 = TVAL1*1.5
IVAL = INT(TVAL1)
OUT = TVAL1 + TVAL2 - REAL(IVAL)

Note that in this example both IN1 and OUT, as declared input or output quantities, are already explicitly
typed as REAL*8 by Easy5 and should not be typed again with a DECLARATIONS command.

Using Integer or Logical Variables in Fortran Code
Easy5 declares each input or output name listed in the Fortran component data table as real, double precision.
Therefore, if you want to use integer or logical variables in your Fortran code, they must not be declared as
inputs or outputs.

If an input must be used as an integer (e.g., as the index on a DO loop) or an integer must be transmitted to
other components as an output, use the following method. For example, suppose that II is an integer input
to the Fortran component and that JJ, calculated in the Fortran code, is an integer output.

1. Define dummy names for communicating these variables to and from other components. Add XII as
an input and XJJ as an output.

2. Assign the appropriate input value to a local variable in the Fortran code. For example, the real double
precision input XII, is assigned to the integer II as follows:

II = XII

II is a local variable and is defined as integer because it starts with the letter I. This is also true for JJ
used in step 3.

3. After the integer output (JJ) is calculated, assign its value to the appropriate output name. For
example,

XJJ = JJ

Note: When using any “pre-release” version of Easy5 the “forced explicit typing” option is activated
by default.

131Chapter 1: Reference Manual Topics
Fortran Component
Adding Nonexecutable Fortran Statements
To include nonexecutable statements (DIMENSION, COMMON, DATA, INTEGER, and others) in a
Fortran component, use this Easy5 command:

DECLARATIONS, nonexecutable statement

The comma following DECLARATIONS must appear.

Supply a separate declaration command for each type of nonexecutable statement. For example, suppose that
DUMMY is to be dimensioned (3,12), XARRAY dimensioned to (10,10), and LOGI and ANSW are to be
declared logical. The appropriate declaration statements are

DECLARATIONS, DIMENSION DUMMY (3,12), XARRAY(10,10)
DECLARATIONS, LOGICAL LOGI, ANSW

You can continue declaration comments on the following lines by the usual “characters in column-6”
convention.

Reference Manual
Fortran Component

132
Reserved Fortran Unit Numbers
Easy5 reserves Fortran unit numbers for generating the model and executing the analyses. The Fortran units
numbers available to the user are unit numbers 50 through 69.

Adding Comments to Fortran Code
You can add two types of comment lines to your Fortran code starting either with a C or an * in column one.
The C comment line is a Fortran comment that is displayed in the source listing of your executable model.
The * comment line is an Easy5 comment displayed only in the Fortran code area in the CDT; it is not
displayed in the executable source file for your model. Use of other comments, such as inline comments
prefaced with a “!”, are generally less reliable for use with Easy5.

Easy5 Reserved Words
Easy5 contains a set of reserved words that you cannot use in your User Code or Library components as inputs
or outputs. In addition, these Fortran variable names should never be set in your code. (Exceptions to this are
ISTOP and PFLAG, which can be set as described in the following sections). Figure 62 contains an alphabetical
list of all Easy5 reserved words.

Note: Easy5 declares any name displayed as an input or output to be double precision. You can only
declare local variables (not defined in the Fortran component input/output table) to be
otherwise. Easy5 includes all names that are displayed as an input or output in a COMMON
block. You can include only local variables to your Fortran component in a COMMON
block that you declare.

Caution: Unit 5 is used for Easy5 input, and Unit 6 is used for Easy5 output. Do not redefine these
unit numbers.

133Chapter 1: Reference Manual Topics
Fortran Component
Figure 62 Easy5 Reserved Words

C GRM IPRINT PI

CCLOCK IAUX IREAD R

CIO ICCALC ISTOP RENAME

CKLOCK ICLOCK ITINC RPD

CP IDELAY IWARN SDOT

CPOITR IDIAG IWRITE STOP

CPUSEC IDUMMY IXOC TABLE

CSIMUL IERR KCLOCK TAU___*

CSIMUR IEZ___* KMOD TAU0

CV IFINAL LOKSIM TIME

CX IMOD LOKSS TINC

CXDOT INCALL MJITER TMAX

D INDP MNITER TSTEP

*Any input/output name beginning with these letters are reserved words.

EQMO INX NRCMAX

ERMESS IOC1 NS VS

EZ___* IOC2 NU XDOT

FO___* IOC3 ONE Z

GRE IOC4 PFLAG ZERO

Caution: If you declare any of these reserved words as inputs or outputs to User Code or Library
components, Easy5 will detect them and issue a fatal error message to that effect. However,
Easy5 cannot detect if you simply set (use it to the left of an equal sign) one of the reserved
words, so exercise care when writing your code.

Reference Manual
Fortran Component

134
Several of these variables can be used in your User Code and library components to monitor an analysis. In
example is the usage of the ICCALC reserved word, used to set initial conditions as described in the next
section. In addition, two of the words, PFLAG and ISTOP, can actually be set to control the simulation
analysis. Easy5 reserved words that you are likely to find useful are described in “Reserved Words”.

Calculating Initial Condition Values in a User-Code Component
Initial conditions are often a function of one or more parameters or other states in your model. Your model
can include one or more User-Code components containing code that sets initial values for these states.

For information on calculating Initial Conditions for library components describing the EZSETV and
EZINIT subroutines review the topic “Initial Condition Calculation”.

Prior to every analysis, Easy5 sets the global variable named ICCALC to a value of 1 and calls your model. (At
all other times, ICCALC is set to 0.) By testing on this variable, you can include special code in a User Code
component to calculate initial conditions for specific states. After this one time call to the model, the initial
condition vector is updated with any new state values that were calculated; no integration is performed.

The following block of Fortran code shows the use of the ICCALC global variable:
if (ICCALC .eq. 1) then
 call ezsetv(S_Out_IN01, GKI_IN01 * 2.345d0)
 call ezsetv(S_Out_TF03, S_Out_IN01 + Z0_TF03 / 4.99d0)
endif

Analogous code could be defined in a C component also. In this example, initial condition values for two
states, S_Out_IN01 and S_Out_TF03, are being calculated. S_Out_IN01 is a function of its gain
parameter, GKI_IN01, and S_Out_TF03 is a function of both S_Out_IN01 and one of its zeros, Z0_TF03.
If this code was included in a User Code component, any initial condition values set for S_Out_IN01 and
S_Out_TF03 in their respective component data tables would be replaced by the values calculated in this
code when any analysis was executed.

Easy5 Matrix Operations
You can perform matrix operations in Easy5 by using a set of shorthand matrix expressions, or you can call
Easy5 subroutines that perform special matrix operations. Both methods are covered in detail in “Matrix
Operations”. An example of using matrix operations in a Fortran component follows.

Assume that you have a matrix named [B] and you want to calculate the eigenvalues (roots) of this matrix.
The following matrix operation notation is used:

/A/ = /B/E

where the resulting eigenvalues of [B] will be saved in the vector A.

Note: Initial condition values that are displayed in component data tables are not changed by
Fortran components that use the ICCALC value. They are simply overwritten with new
values before an analysis.

135Chapter 1: Reference Manual Topics
Function Scan Analysis
There is matrix notation for performing all the common matrix operations: addition, subtraction, multiply,
cross product, dot product, inverse (linear equation solution), transpose, eigenvalues, defining identity and
null matrices, and defining an equality matrix. These are listed in “Matrix Operations”.

Sorting Fortran Component Code
At your request, Easy5 sorts your Fortran code in the same way that it sorts your model and the code in any
library components used in your model. By default, no sorting is done for Fortran (or C) components. The
Fortran Component editor contains an Sorted checkbox in the upper right corner. To enable sorting, click
the Sorted checkbox.

If the Sorted box is unchecked, Easy5 (specifically, the code generator) only sorts on inputs that are connected
-- it does not look at the sort block code to confirm that quantities defined (anything on the left-hand-side
of an equals “=” sign) are assigned by quantities already defined previously. A Fortran sort block with no
connected inputs is thus always sorted “to the top” (but always after special “mandatory” library components
that define global variables for a particular application library).

If the Sorted box is checked, the Easy5 code generator not only sorts on the inputs that are connected, but it
also analyzes the (sort block’s) code body to make sure that all quantities defined (anything on the left-hand-
side of an equals sign) are dependent on quantities defined in a previous (or current) sort block.

You can also add BEGIN SORT BLOCK and STOP SORT BLOCK commands to turn Fortran sorting on and
off, respectively. This is recommended to help minimize the number of sort blocks in your model. These
commands are placed directly in your Fortran code on separate lines to delineate Easy5 sort blocks. For more
information see the topic “Sort Blocks”.

If you add one or more of these commands to your Fortran code, your Fortran component can be no longer
that 512 lines, including Fortran comment lines and the BEGIN SORT BLOCK and STOP SORT BLOCK
command lines. This 512 line limit only applies if you request sorting.

Function Scan Analysis
See also :"Analysis Data Form"

The Function Scan analysis is most commonly used as a model verification tool to check the algebraic
relationship between two points in the model. You can specify one or two independent variables to be varied
and a dependent variable of interest, and Easy5 will vary the independent variable(s) and produce a plot of
each static functional relationship that exists.

Figure 63 shows examples of the types of plots generated with the Function Scan analysis. The items labeled
in this figure correspond to data fields in the function scan data form discussed below.

Reference Manual
Function Scan Analysis

136
Figure 63 Function Scan Plots

Setting up a Function Scan Analysis
The Function Scan analysis is setup and executed using the Function Scan Analysis data form. This data form
is accessed by first selecting Analysis from the main menu bar, then Miscellaneous, and Function Scan...

The function scan data form with all data fields and options is shown in Figure 64. To save the settings in this
data form, and to fill in the title, time and initial operating point data fields, refer to “Analysis Data Form”.

137Chapter 1: Reference Manual Topics
Function Scan Analysis
Figure 64 Function Scan Analysis Data Form

Defining the Time of the Function Scan Analysis
You can define the time at which the Function Scan analysis will be performed with the “Time” value in the
data form. Normally, the time value is zero, so the default value does not need to be changed. However, if you
have time dependent functions in your model (e.g., table lookups as a function of time) and you wish to run
this analysis at a time value other than zero, set this value appropriately. To set the “Time” value, select the
data field following “Time =” and type in a new value.

Defining the First Independent Variable
The "1st Independent Var" data field is used to define the name of the independent variable that will be varied
to produce the function scan plots. This quantity can be any state, variable, or parameter in your model. You
can enter an independent variable name directly by typing it in the data field, or using the "Pick" option.

Reference Manual
Function Scan Analysis

138
Defining the Dependent Variable
The "Dependent Variable" data field is used to define the dependent variable that will be plotted during the
Function Scan analysis. The dependent variable must be the name of one of the variables in your model. You
can enter a value by selecting the data field and typing in a dependent variable name. You can also use the
"Pick" option to specify this quantity.

Defining the Independent Variable's Starting Value
The data field following “Start Value =” is used to define the initial value given the independent variable. To
enter a start value, select the data field and enter a value.

Defining the Independent Variable's Final Value
The data field following “Stop Value =” is used to define the final value assigned to the independent variable
during this analysis. To enter a final value, select the data field and enter a value.

The number of steps taken between "Start Value" and "Stop Value" is not under your control. Easy5
automatically takes 49 steps from "Start Value" to the "Stop Value", resulting in 50 points being calculated
for the dependent variable.

Function Scan with Two Independent Values
You have the option of defining a second independent variable for the Function Scan analysis. If you do this,
multiple function scan curves will be generated as previously shown in Figure 64. To define a second
independent variable, select “Yes” following “Second Independent Variable:.” The data fields that appear in
the data form are described below.

Defining the Second Independent Variable
Define the second independent variable using the “2nd Ind. Var:” data field. Type in the name for the variable
directly into the data form, or use the “Pick” method described in the “Model Explorer Window”.

Defining the Initial Value for the Second Independent Variable
The starting value for the second independent variable is defined in the “2nd Start Val” data field. Type the
secondary starting value directly in the data form, or use the “Pick” method described in the “Model Explorer
Window”.

The final value for the second independent variable is defined using two parameters in the function scan data
form, “2nd Var Step Size” and “# of Curves”, rather than a single parameter. These parameters are described
in the next section.

Defining the Secondary Variable Step Size
The “2nd Var Step Size” parameter is used to define the step size applied to the secondary independent
variable. This value, and the “# Of Curves” parameter described below, define the final value given to the
second independent variable during this analysis. To define the step size, select the “2nd Var Step Size” data
field, and type in a value.

139Chapter 1: Reference Manual Topics
Function Scan Analysis Method
Specifying Secondary Independent Variable Curves
This “# Of Curves” parameter value, minus one, defines the number of steps that will be taken from the “2nd
Start Val” value for the secondary independent variable. This parameter and the “2nd Var Step Size” value
define the final value given “2nd Ind. Var.” To enter a “# Of Curves” value, select the corresponding data field
and type in a number.

Suppressing Function Scan Plots
When this analysis is executed, dependent variable values for all independent variables are printed to the
analysis output listing file and a plot file is prepared. If you do not want to plot these data using the Easy5 on
line plot program, select "No" following "Plot Results:" on the function scan data form.

Function Scan Analysis Method
Function scan calculations begin by setting the system states to the current operating point values, and all
rates to zero. The system model equations are then evaluated. The specified independent variable, INDEP1,
is set to its initial value, START1, and the model equations are reevaluated. If INDEP1 is a state or
parameter, the model equations are completely reevaluated. However, if INDEP1 is a variable which would
normally be calculated by the model equations, the reevaluation begins at the statement (in SUBROUTINE
EQMO) immediately following the component that calculates the variable or rate. This process of
reevaluation is repeated fifty times as the independent variable is scanned from START1 to STOP1. After
each reevaluation the value of DEPEN is recorded.

For a two dimensional function scan, INDEP2 is set to its specified value before each scan of INDEP1.

Graphic Files, EMFs, and PostScript
The schematic block diagrams and plot data can be exported to a Window’s “enhanced meta file” (EMF)
formatted file. EMF is a standard graphics format that can be directly imported into Word, PowerPoint and
Excel.

This allows you to easily output your Easy5 graphics into Word or PowerPoint, and most important, you can
then edit your Easy5 graphics in these tools. You can annotate your Easy5 graphics, enlarge/decrease the
graphic's size, change line colors, delete graphic elements, and edit text.

Generating the Schematic Block Diagram EMF Graphics File
The schematic block diagram is exported to external EMF graphic files using the File > Export Schematic
menu options from the main menu bar. The following export options are available:

Reference Manual
Graphic Files, EMFs, and PostScript

140
Selecting any of these options will open the dialog shown in Figure 65. In the bottom “Selection” input field,
enter the root name of the output file. Easy5 exports the schematic with an “emf” extension, named
<file>.emf.

Figure 65 Export to WMF Dialog

Selecting “Entire Hierarchy” exports a separate EMF file for each submodel. Easy5 automatically adds a file
name extension for each submodel as: <file>.s<i>.emf, where "s<i>" designates a separate submodel, using
i=1, 2, 3,...

Export Menu Option Action

Current View Exports only the schematic block diagram currently displayed in the Easy5
window. You can zoom in/zoom out to get the desired view.

Current Schematic Exports the current displayed schematic block diagram, but zooms in/out to fit
the entire schematic in the window.

Entire Hierarchy Exports the entire model and all submodels.

141Chapter 1: Reference Manual Topics
Graphic Files, EMFs, and PostScript
If the model contains a top level schematic and two submodels, three EMF files are generated, named
schema_graphics.s1.emf, schema_graphics.s2.emf, and schema_graphics.s3.emf.

Generating Plotter EMF Graphics File
Easy5 Plotter files are exported to external EMF graphic files using the Export menu options from the main
plotter menu bar. The following export options are available:

Easy5 exports the plotter display to a EMF file with "emf" extension, named <file>.emf. When you select
Export Selected Displays, a dialog opens letting you specify the file that you want to export as EMF.

Selecting “Export Current Display” exports the plot from the current display to a single file. Selecting any of
the other options exports more than one display to a separate EMF file for each display. In these multi-file
exports, Easy5 automatically adds a file name extension for each display as: <file>.d<i>.emf, where "d<i>"
designates a separate display, using i=1, 2, 3,...

In the example shown in Figure 65, if the plot file contains four displays and Export All Displays in File is
selected, four EMF files are generated, with the following names: schema_graphics.d1.emf,
schema_graphics.d2.emf, schema_graphics.d3.emf and schema_graphics.d4.emf.

Using EMF Graphics
EMF graphic files can be imported and edited in several word processing tools.

Importing Easy5 EMF Graphic Files
The EMF generated graphic files can be imported directly into Word, PowerPoint and Excel. To do this,
select Insert > Picture > From File..., select the EMF file and select the [Insert] button. If you do not see
the EMF file listed, make sure that the “Files of type” dialog includes "*.emf" as one of the options, or set
this to “All Pictures”.

Editing Easy5 EMF Graphic Files
Once the file is imported into the document, you can edit the graphic. First, you may need to resize the image.
To do this, select the image, and grab a corner and drag it to the desired size. The Easy5 EMF graphics is
generated as a single “grouped image”. To edit the graphic image, you must first convert the image to an
editable image. Double-click on the image. In PowerPoint, a dialog may appear, prompting the message,

Plotter Export Menu Options Action

Export Selected Displays... Exports only the displays selected in the “Displays” window pane. To
select multiple displays, hold the <Ctrl> key and select one or more
displays.

Export Entire Case... Exports all the displays in the currently selected Case.

Export All Displays in File... Exports the entire plot file and all the displays.

Reference Manual
Graphic Files, EMFs, and PostScript

142
“This is an imported picture, not a group. Convert it to a Microsoft Office drawing?”; select “Yes”. In Word,
the graphic will be place in the Word graphics editor. Select the image, and then ungroup the image.

Every image will be converted as a separate vector graphic image. This allows you to edit every image. You
can edit and change objects and text, change the color, width, delete, add, etc. Word’s graphic editor is limited
in features and functionality, and is not as good as PowerPoint’s editor.

Overriding Hard copy and EMF Plot Curve and Grid Widths
By default, curve and grid widths will be 2 for printed and exported plots. You can override these defaults
using the environmental variables EZ_HC_GRID_COLOR and EZ_HC-CURVE_WIDTH. For
information on setting environmental variables, see “External (Environment) Variables”.

Exporting Plot Files
You can also export plot data in various formats as described in the following table by selecting the Export
Plot Data As.. from the Plotter Export menu.

Easy5 files can be exported for use with ADAMS models. When you select this option, the dialog shown in
Figure 66 appears.

Plot Export Menu Options Action

ADAMS/PPT XRF File Translates results into form readable by Adams/PPT.

Comma Delimited (CSV) File.. Translates results into generic data form.

ESA File... Translates results into proprietary form (Boeing).

143Chapter 1: Reference Manual Topics
Graphic Files, EMFs, and PostScript
Figure 66 Export to ADAMS/PPT XRF File Dialog

EMF Graphic Editors
You may wish to edit an Easy5 generated EMF graphic before importing it into a document. There are many
tools that can read EMF graphics, but do not edit the graphics and only allows you to save the graphics in a
different format, such as GIF and TIF.

However, there are a few tools that may be used to edit the EMF graphic files. A list of a few tools are given.
We do not promote these tools, but merely list them for your convenience.

Metafile Companion by Companion Software, Inc. - Metafile Companion (MC) is a Windows metafile editor.
This is a full featured editor, that allows you to edit EMF files, and save the output in many different graphics
formats. It costs approximately $29.00. For more information, visit their web site at:
http://www.CompanionSoftware.com.

Paint Shop Pro by JASC Software, Inc. - Paint Shop is a good commercial tool used to read, edit and save EMF
graphics. For more information, visit their web site at: http://www.jasc.com.

Reference Manual
Icon Editor

144
Importing a PostScript File Into a Document
The export of PostScript file to a document applies only to the Linux version of Easy5. The schematic block
diagram can be exported to a PostScript file and imported into a document using any word processor that
allows PostScript files to be imported. First, the schematic block diagram needs to be written into an
appropriate PostScript formatted file.

The following steps, which apply only to Linux, will setup the correct PostScript file:

1. Go to File > Print.

2. Select Print to File and enter the desired file name.

Icon Editor
Please see the User Guide, Chapter 9 - Icon Editor for detailed information on how to use the Icon Editor.

Note: Easy5 writes the EPS file as a printable image, not as a bitmap image. As a result, when the
PostScript file is imported into a document, the bitmap image cannot be seen; only a gray
box is displayed. However, even though the image cannot be viewed, it does print correctly.
If you have a PostScript previewer, you can view it.

145Chapter 1: Reference Manual Topics
Implicit Model
Figure 67 Easy5 Icon Editor

Implicit Model
See also: "Sort Blocks"

User Guide, Chapter 13 - Implicit Modeling

An implicit model is a model that contains an implicit loop. A model with an implicit loop cannot be built,
and Easy5 will warn you that "errors occurred during model generation phase". You must resolve all implicit
loops in your model before the model can be built. This section discusses what an implicit model is, and how
to resolve implicit loops.

Reference Manual
Implicit Model

146
Definition of an Implicit Model
An implicit model is a model which contains an implicit mathematical relationship that results in an implicit
loop. An implicit relationship occurs when variables are a function of each other. Figure 68 shows the most
basic example of an implicit relationship: x is a function of y, and y is a function of x. In order to calculate x,
you must know the value of y, but y requires that x be known.

Figure 68 Example of an Implicit Relationship

Easy5 sorts components to build an "explicit" model. An explicit model is one for which all output variables
are calculated before they are used as input to other components. Components are moved and put in a
sequential order that results in an explicit model. When Easy5 detects an implicit loop, it attempts to break
the loop by moving the components that cause the implicit loop. Easy5 will attempt to sort all components
to form an explicit model.

However, there are cases in which implicit loops cannot be broken by sorting components. The example of
Figure 68 is such a case. Moving component B before component A will not break the implicit loop. As a result,
you must resolve this implicit loop. The sections that follow show several examples of implicit models and
how to resolve the implicit loops.

Example of an Implicit Model
The most simple example of an implicit model is a model that is similar to the system shown in Figure 68.
Figure 69 shows a similar implicit model built in Easy5. This models a simple controller. It has an command
(AF component) and a feedback from the GF component, into a summation block (component SJ). The
output of the SJ component is the controller error, which is input into the first order lead lag component LE.
The output of LE is an algebraic variable, and is fed back into the summation component SJ.

147Chapter 1: Reference Manual Topics
Implicit Model
Figure 69 Example of an Implicit Model

To see why this results in an implicit model, write out the mathematical relationships as follows:

It is clear that the model in Figure 69 results in an implicit relationship that cannot be resolved. In general, an
implicit model results from the lack of a state variable in a feed forward or feedback path. State variables are
significant because their values are calculated by the integrator before the executable
model (subroutine EQMO) is called, and as a result, they break the mathematical relationships in your system
model.

Easy5 Model Generation of an Implicit Model
What happens when Easy5 attempts to resolve an implicit loop but fails? In the example shown in Figure 69,
Easy5 will attempt to sort the components to break the implicit loop but will fail. During the “Create
Executable” process, Easy5 will terminate the model building process and will warn you with the following
message:

Equations:

S_Out_SJ = S_Out_AF - S_Out_GF

S_Out_LE = GAI_LE * S_Out_SJ + X1_LE

S_Out_GF = K_GF * S_Out_LE

Relationships:

SJ= f(AF,GF) but, GF= f(LE), and LE= f(SJ)

as a result:

SJ= f(AF,LE)

LE= f(SJ)

Reference Manual
Implicit Model

148
Errors occurred during model generation phase.

Whenever you get this message, you should open and analyze the model generation listing file (select the
Build > Display Model Generation Listing... menu). If the Easy5 model builder failed to build an explicit
model, an error message is given at the bottom of this file, telling you which connections form an implicit
loop. For the model in Figure 69, the following message results:
*** FATAL ERROR *** THE FOLLOWING CONNECTIONS FORM AN IMPLICIT LOOP. ALL CONNECTIONS
BETWEEN ANY TWO COMPONENTS IN THIS LOOP MUST BE REMOVED OR REPLACED BY STATE OUTPUTS.
IF OTHER IMPLICIT LOOPS EXIST, THEY CANNOT BE DETECTED UNTIL THIS LOOP IS REMOVED FROM
THE MODEL.
S_Out_SJ FROM COMPONENT SJ IS AN INPUT TO COMPONENT LE
S_Out_LE FROM COMPONENT LE IS AN INPUT TO COMPONENT GF
S_Out_GF FROM COMPONENT GF IS AN INPUT TO COMPONENT SJ

Example of an Explicit Model
Assume that the first order lead lag component LE is replaced by a first order lag component LA. This model
is shown in Figure 70.

Figure 70 Example of an Explicit Model

The model generation program will detect an implicit loop, but in this case, it will be able to sort the
components to form an explicit model. The equations and the mathematical relationships are similar to the
previous example. The main difference is that the LA lag component output, S_Out_LA, is a state variable, not
an algebraic variable!

States are the result of the integration of the rate vector, and therefore are always known quantities at all times.
The state vector is passed to the model upon successful integration, and all state values are known at the
beginning of the next iteration. As a result, the components that are a function of state variables can be sorted
and moved anywhere in the model, and can therefore break implicit loops!

The model shown in Figure 70 will result in the model generator placing the components in the following
order:

AF

GF{GF= f(S_Out_LA) where S_Out_LA= state breaking the implicit loop}

SJ{SJ= f(S_In_AF, S_Out_GF}

149Chapter 1: Reference Manual Topics
Implicit Model
LA{LA= f(SJ}

The GF component can be moved to the top and placed before the SJ component. This is because the GF
component is a function of a state variable, S_Out_LA.

How to Break Implicit Loops
The following are general recommendation for breaking implicit loops. When you encounter an implicit
loop, you should follow these recommendations in the order they are presented.

Correct Over-Simplified Model
In the physical world, there is no such thing as an implicit system; usually implicit system models arise during
construction of simplified models of feedback control systems. Most control systems are made up of the
following dynamics: plant, sensor, controller and actuator dynamics. During construction of a simplified
model, one or more of these items may be omitted based on the assumption that they are too fast to be of
any concern. The result is often an implicit model which assumes that information flows instantly around
the system. This model is not only physically incorrect, but is also more difficult to analyze than a true model
that includes all the dynamics. By restoring omitted system dynamic effects, implicit relationships can often
be eliminated.

Modify Connections and Components to Break Implicit Loops
Easy5 will tell you which connections result in an implicit loop. Analyze your model and determine which
components and connections cause the implicit loop. You may be able to use a different component to break
the implicit loop. Components that typically cause implicit loops are as follows.

GT Component: This is a general transfer function component of order "n". The GT component output is
a algebraic variable. If the GT component is causing the implicit loop, try using the GS component whose
output is a state, or build the transfer function using a series of first and second order transfer function
components.

SM Component: This component models a state variable model, with the output Y vector being algebraic
variables. If the feed through matrix [D] is all zeroes, then, use the SR component in place of the SM
component. This is a reduced format of the SM component which assumes that [D] is zero, and whose Y
vector output is only a function of the state X vector. This will break the implicit loop.

Components with Hard Limits: Some components that model hard limits may cause implicit loops. An
example is the IH Integrator with Hard Limits component. The clamped output signal (S_LimOut_IH) is an
algebraic variable which outputs a signal with absolute accuracy during the hard limiting. However, if this
causes an implicit loop, then delete the output connection and use the output signal (S_Out_IH) for
connecting to other components. The S_Out_IH output is a continuous state which will break the implicit
loop.

Note: You should make a habit of analyzing the executable source file. This file shows you how the
components and equations are sorted to form an explicit model.

Reference Manual
Implicit Model

150
Use Sort Blocks to Break Implicit Loops
If a Fortran component or your own user-defined Library component is causing an implicit loop, you may
be able to break this loop by breaking the code into multiple sort blocks. The components’ entire body of
code can be broken up into smaller blocks of code that can then be sorted by the model builder to break
implicit loops. For information on how to use sort block, refer to “Sort Blocks”.

Use Easy5’s Implicit Modeling Feature
Easy5 has a built in implicit model solver which resolves an implicit loop by transforming the implicit
relationship into a differential algebraic variable. If your model has an implicit loop which can not be resolved
using the standard methods listed above, then use this feature to resolve the implicit loop. First you must turn
on the implicit solver, before building the executable model. To do this, select: Build > Solve Implicit Loops.
Then, build the executable model. When you are ready to perform a simulation, you must set the integration
method to Radau54. This integration method is specific for solving the differential algebraic equations that
results from solving the implicit loops. See User Guide, Chapter 13 - Implicit Modeling.

Transform Algebraic Variable into a State
If all else fails, you can resolve an implicit loop by transforming an algebraic variable into a pseudo state. To
do this, insert a lag component (either the LA or LG component) in the implicit loop. This will transform
the algebraic variable into a continuous state which can then be sorted and placed anywhere in the model.

For example, the model previously shown in Figure 69 is an implicit model which cannot be resolved using
the recommendations given above. The only way to break this implicit loop is to insert a lag component after
the lead lag component as shown in Figure 71.

The natural frequency of this lag should be made large compared to the other dynamic effects of your model,
to minimize its effect on the model dynamics. As a rule of thumb, set the lag’s natural frequency pole (=1/TC)
10 times higher than the highest dynamic pole.

For the example shown in Figure 71, if the lead lag pole (P0 LE) is set to 10 rps, then the lag pole should be
set to 100 rps, or the time constant TC LA=.01.

151Chapter 1: Reference Manual Topics
Initial Condition Calculation
Figure 71 Example of using the LA Component to Break an Implicit Loop

Initial Condition Calculation
See also: "Operating Point"

The Initial Condition Calculation analysis is used to calculate the model’s initial condition. Initial conditions
specify initial values of states for simulation and Steady-State analyses, and define the "operating point" for
all other analyses.

The Initial Condition Calculation analysis executes the model equations one time to setup the initial
conditions, and then updates the initial condition vector with the state values. With the state vector defined,
Easy5 is ready to initiate any analysis.

The initial conditions should be calculated for all states in a model before any analysis is performed. As a
result, Easy5 automatically calculates the initial conditions before performing a user requested nonlinear or
linear analysis.

For example, when you submit a simulation, even though you do not request the calculation of initial
conditions, Easy5 automatically calculates the initial condition vector, and then executes the simulation
analysis. The exception to this rule is with Multiple Analysis. The initial conditions are not calculated at the
start of the Multiple Analysis, and therefore, you should add “Calc. Initial Conditions” as the first entry in
the Multiple Analysis data form.

Note: Breaking an implicit loop using a lag component should only be done as a last resort.
This method introduces a higher order dynamic mode and will result in longer simulation
execution time. However, using a stiff integration method, such as BCS Gear, will make the
effect of the added lag component less noticeable.

Reference Manual
Initialization Statement

152
You may wish to calculate the initial conditions without any other analysis, to obtain a snapshot of your
model data. This can be performed by setting up and executing the Calculate Initial Condition data form as
shown in Figure 72.

Figure 72 Calculate Initial Condition Data Form

To open this data form, select Analysis > Miscellaneous > Initial Condition Calculation...This data form is
simple and contains the general data input fields as described in “Analysis Data Form”.

This data form also contains the [Execute/Debug] pushbutton that allows you to run this analysis with the
symbolic debugger. See “Debugging the Model and Analysis” for additional information on this feature.

The results of this analysis are contained in the output listing file. The initial condition values at the user
specified time and operating point will be listed in this file.

Initialization Statement
Component initialization is generally done using tests on INCALL > 0. This works fine but causes many tests
to be made on each call to the model. By using initialization blocks, all the initialization code is grouped
together at the top of the model and is activated by a single test on INCALL > 0. The initialization statement
will usually be more efficient both in amount of code in the generated model and the execution time.

153Chapter 1: Reference Manual Topics
Integration Methods
Code initialization is defined using BEGIN INITIALIZATION and END INITIALIZATION statements,
and inserting the initialization code between these statements. For example, suppose in a Fortran code
component, you need to set the variable xyz to zero at the beginning of each analysis. You would do so using
the following code:

Begin Initialization

xyz = 0.0

End Initialization

The initialization code is only used in Fortran and Library components. The statement is an Easy5 statement,
and therefore, can be in upper and/or lower case, and can begin in any column.

Integration Methods
See also: "Integration Method Selection Guidelines"

"Simulation Troubleshooting"

Ap. B: Guide to Numerical Integration

Easy5 uses a central integrator to calculate the states. The executable model calculates the rate of all states and
passes the rate vector to the central integrator. The integrator then integrates the rates to calculate the new
state values. There are seven types of integration methods available to the user. These methods are discussed
in this section.

The Integration Method
During a simulation, values for all states in your model are calculated by your model and the Easy5
integration algorithm you select, as shown in Figure 73.

Note: If you have initialization code which should be executed only once on the very first call of
the model, you will still need to enclose that code in an "INCALL .EQ.2 if block, but it will
still be more efficient to enclose the code in an initialization block.

Caution: Do not include any inputs that are being “driven” by (i.e. connected from) other quantities
in your model equations -- incorrect results would occur. Placing any code inside an
Initialization block forces it to be sorted to the beginning of your model code, and does not
allow it to be calculated by the model later.

Reference Manual
Integration Methods

154
Figure 73 Integration Process During a Simulation

At the INITIAL TIME of the simulation, the set of initial conditions for all states is passed to the integrator
for initialization purposes and then passed on to your executable model. The executable uses these initial state
values to calculate the rates of all states at the INITIAL TIME, based on your model equations.

These rates are passed back to the integrators, and a new set of state values is calculated for the next time step.
This process is repeated for every time step in the simulation to produce time history plots of the dynamics
in your model.

Integration Methods Available
The Easy5 program offers you a choice of seven different integration algorithms, listed in the table shown
below. All the methods can be used for sampled data systems. A brief discussion of each method and some
guidelines for method selection follow. See Ap. B: Guide to Numerical Integration for more information on
numerical integration.

Table 1-18 Integration Methods

Name Method Order Type
INT

MODE

BCS Gear BCS Modified Stiff Gear Variable Variable Step/Implicit 1

Runge-Kutta Variable-Step 4th Variable Step/Explicit 2

Huen Fixed-Step Huen Method 2nd Fixed Step/Implicit 3

Euler Fixed-Step Euler 1st Fixed Step/Explicit 4

Adams Adams-Bashforth Predictor
Adams-Moulton Corrector

2nd-12th Variable Step/Explicit 5

155Chapter 1: Reference Manual Topics
Integration Methods
Definition of Terms
Several terms shown in the table above need defining so that the integration techniques can be fully
understood. Terms discussed in the following subsections are: order, fixed and variable step types, and
implicit/explicit methods. INT MODE refers to the internal analysis command value.

Order
The order of a particular method indicates the number of times your model equations must be executed for
a successful integration time step. Thus, a second order method makes two calls to the model, while a fourth
order method makes four calls per time step. In general, the higher the order, the better the stability and
accuracy for a given time increment, but also the more model equation evaluations and the more computer
time required per integration step.

Fixed and Variable Step Methods
Two kinds of step size selection methods exist: fixed and variable step. Fixed step methods use a time step that
does not change during a run. In contrast, variable step methods continuously adjust their internal time step
to fall within an error tolerance defined by the error control values in your model.

Fixed step methods, while requiring fewer calls to the model for a given time step, are restricted to the same
time step (usually small to maintain accuracy and stability) during the entire simulation.

Thus, fixed step methods often require more total model equation evaluations (or model calls)
over an entire transient than are required for variable step methods. Fixed step integration is depicted
in Figure 74.

Stiff Gear Hindmarsh version of Gear Variable Variable Step/Implicit 6

Radau54 Radau 5-4 5th variable step three stage
fifth order implicit Runge
Kutta

7

Fixed-Step RK Fixed-Step Runge-Kutta 4th Fixed Step/Explicit 8

User-Defined N/A N/A N/A 9

Table 1-18 Integration Methods

Name Method Order Type
INT

MODE

Reference Manual
Integration Methods

156
Figure 74 Fixed-Step Integration Method

Variable step methods, because they continuously adjust their time step, occasionally exhibit the problem of
"grinding" the step size so small, to satisfy their error tolerance, that they take much longer to complete a
transient. However, for most models variable step integrators will provide you with efficient and precise
integration and are the methods of choice.

Figure 75 depicts variable step integration. Variable step methods are sensitive to model discontinuities as they
try to reduce their step size to smoothly "cross" a discontinuity. Easy5's switch state components provide an
efficient medium for handling model discontinuities of this kind.

Figure 75 Variable-Step Integration Method

Implicit and Explicit Methods
Integration methods may be categorized as implicit and explicit. An explicit method uses an integration
technique that uses the current rate to estimate the value of the state at the next time step. An implicit
method, on the other hand, uses the rate at the current as well as the next time step, which is unknown, to
estimate the same value.

157Chapter 1: Reference Manual Topics
Integration Methods
Hence the name: the equation is an implicit one, implying an iterative solution. By their nature, implicit
methods provide greater stability. However, for a given time step an implicit method requires more execution
time than an explicit method because of the iterative nature of the solution required.

On the other hand, explicit methods cannot always ensure stability for a given time step. Depending on your
model and your application, one method may be better than the other.

The BCS Gear Method
This variable step, variable order, implicit method is the default. Boeing Computer Services improved the
Hindenhairs-Gear method to speed up its use of linear algebra. Its initial time step is set to
TINC INCREMENT/100, and it will adjust its step size and move time forward and/or backward in its
solution process.

This method was designed for so called "stiff" systems, in which there is a wide range of frequencies or
eigenvalues, to effectively ignore high frequencies which would otherwise force you to use an extremely small
step size with other methods. A real advantage to using BCS Gear is that it can take time steps up to 10 times
larger than your value of TINC enabling it to make very fast progress through areas of your transient where
system rates are relatively small. This method should be used with most types of models, especially for stiff
systems. However, due to its stability region, BCS Gear should be avoided for very lightly damped systems. It can
be used with sampled data systems where the internal time step will have its upper limit "clamped" at the
fundamental sampling rate.

The Runge-Kutta Methods
This is a variable step, fourth order, explicit method. The integration step size is automatically adjusted to
maintain error tolerances established by error controls. Accuracy is achieved by evaluating the derivative
function, f(x,t), at values of time between a full time interval. The full step size is reduced until the difference
between the states, as estimated by a full step and two successive half steps, is within the error tolerance. We
suggest that this method be used after you first try the BCS-Gear or Adams methods. While it is the most
robust method, you may pay for this with added execution time. A fixed step, fourth order, explicit Runge-
Kutta integration algorithm is also available.

The Huen Method
This is a fixed step, second order, implicit method. It exhibits better stability and accuracy properties than
the Euler method over a given time step. It has also been given other names: Second Order Runge-Kutta or
Modified Euler. However, it requires two model evaluations per time step. In general, we recommend using
this method over the Euler method.

The Euler Method
This is a fixed step, first order, explicit method. As the most simple integration technique, it is often used for
debugging purposes or when a fixed step integrator is required.

Reference Manual
Integration Methods

158
The Adams Method
This is a variable step, variable order (2 through 12), explicit method and is well suited for systems exhibiting
low damping.

The User-defined Method
You can use your own integration algorithm during a Simulation analysis. To do this, you must supply an
integration subroutine for Easy5 to call when continuous states are to be advanced from the current point in
time to the next point.

The user-defined integration subroutine, or the subroutine which calls your integration routine, must be
named EZUSRI. The calling sequence of EZUSRI supplies the current time point and the time increment
to the next time point. You must supply an integration algorithm that advances the state(s) through the time
increment. Figure 76 shows a template for the user-defined subroutine, including the definitions of the calling
sequence arguments.

The EZUSRI template is stored in the Easy5 scrlib folder, gp subfolders

<Easy5_home>/easy5/scrlib/gp

as the file ezusri.f.

Edit the ezursi.f to match the general format and content of Figure 76 and add your integration code to
it. Then compile it and link it before creating the executable model.

159Chapter 1: Reference Manual Topics
Integration Methods
Figure 76 EZUSRI Template for User-Defined Integration Routine

 SUBROUTINE EZUSRI (TIME,TINC,CPUSEC,N,ISTOP)

 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*8 TIME,TINC,CPUSEC
 INTEGER N,ISTOP
 COMMON /CX / X(1)
 COMMON /CXDOT / XDOT(1)
 COMMON /CWORK / A(1)
 COMMON /EZDEEF/ EZMDDF,HXNEXT,TEVNXT,IEZGAP,IEZDCS,ISWUPD
 COMMON /CORDER/ NOX,NOV,NOP,NOXN,NOVN,NOPN,NOD,NOS,NODN,NOSN,
 1 NOXT,NOXNT,IDSCRT,NOSW,NOSWN,NOXX,NOXXN
 SAVE CPU
 DATA CPU /-1.0/

C --- Save time at start of step
 STIME = TIME

C --- Initialization - Guess past state using current rate
 IF (CPU .EQ. CPUSEC) THEN
 DO 100 I = 1, N
100 A(I) = X(I) - TINC*XDOT(I)
 ENDIF
C --- Extrapolate to get predicted state and save current state
 Do 200 I = 1, N
 TEMP = X(I)
 X(I) = 1.5*X(I) - 0.5*A(I)
200 A(I) = TEMP

C --- Evaluate rate at end of step using predicted state
 TIME = TIME + TINC
 CALL EQMO(TIME,TINC,0)

C --- Correct the state vector using the new rates
 DO 400 I = 1, N
400 X(I) = X(I) + TINC*XDOT(I)

C --- Update the switch states if necessary
 If (EZMDDF .GT. 0) THEN
 DO 500 I = NOXT+1, NOXX
500 X(I) = XDOT(I)
 Endif
C --- Restore saved time value
 TIME = STIME
 RETURN
 END

Reference Manual
Integration Method Selection Guidelines

160
Integration Method Selection Guidelines
See also:"Integration Methods"

"Simulation Troubleshooting"

Ap. B: Guide to Numerical Integration

In Easy5, the effect of integrator step size and integration method can be quickly evaluated. This is done by
repeating a typical simulation run with different integration methods, error controls, or step sizes, and
plotting the Easy5 reserved word CPUSEC versus TIME.

Such an evaluation should be made before expending a large amount of computer time on simulation studies
of an unfamiliar model. Easy5 provides the BCS-Gear method, as a default. This method was chosen since it
is very good with stiff systems, and since stiff systems are quite common in the areas to which Easy5 has been
applied.

It is good practice to use the linearized analysis capabilities of Easy5 to investigate model stability and
characteristics before attempting simulation. The following are some general integration method selection
guidelines:

1. If no special knowledge is available about the system, try the variable step Runge-Kutta method. This
method usually performs quite adequately on a broad range of problems. However, it will probably
be worthwhile to consider switching to another method when more is known about the system, since
Runge-Kutta is by no means the most efficient method.

2. If a large amount of output is desired with small time increments, the Adams or Stiff Gear methods
should be considered. These methods use interpolation rather than generating smaller time steps
when output points are smaller than current step sizes. However, these methods are adversely affected
by discontinuities such as sampling, nonlinearities in the model, or external disturbances to the
model.

3. If the model involves discrete dynamic elements (sampled data), small time steps will be required for
the entire duration of the run. In these circumstances, it's more cost effective to use one of the fixed
step methods because they require less computing per step. However, with these methods, the user
must specify the size of the time step increment (TINC) and is responsible for insuring that the
integration algorithm remains stable.

4. If the model contains non differentiable nonlinearities (e.g., coulomb friction, deadband, etc.) not
implemented using switch states, the Runge-Kutta method is recommended. With the Runge-Kutta
integrator, care should be taken if a large number of output data points at small time increments is
desired. If the method is forced to reduce the step size in order to accommodate the data
requirements, it could become significantly more costly than a fixed step method.

5. If the problem is stiff (i.e., there is a large spread in eigenvalues where the high frequency eigenvalues
are well damped), either BCS-Gear or Stiff Gear is recommended. Both of these methods employ the
same basic algorithm. However, BCS-Gear makes use of state of the art numerical techniques which
increase its efficiency.

6. If the system has high frequency eigenvalues that are lightly damped (i.e., flexible modes), then the
Adams method is recommended.

161Chapter 1: Reference Manual Topics
Integration Method Selection Guidelines
7. If the system is defined as an implicit model, then you must select the Radau54 integration method,
and prior to building the executable model, you must turn on the implicit solver by selecting: Build
> Solve Implicit Loops. For complete information on implicit modeling, see the User Guide, Chapter 13
- Implicit Modeling

It should be noted, however, that problems with large eigenvalues (with negative real parts) do not
automatically indicate that one should use Stiff Gear. For example, consider the system:

(1)

This is an uncoupled system (and might seem artificial), but coupled systems often display the behavior of
rapidly damping components such as X2. If one was integrating this model and the important variable was
X1 and TMAX was large, then a large step size could be used, provided the numerical integration of X2 was
damping to zero (i.e. stable). In such a case, the Stiff Gear method would be appropriate.

In contrast, if TMAX was small, such as TMAX = 0.0001, and X2 was the component of interest (where
relative accuracy is important), then an efficient integrator such as Adams, or perhaps Runge-Kutta, would
be appropriate. Therefore, the decision to use Stiff Gear depends on both the user requirements
for accuracy and the eigenvalues of the system.

Guidelines for Setting Error Controls
A quantity known as an "error control" is associated with every state in your model. Error controls are used
in two ways by the Easy5 program: to determine an integration step size control for variable step integration
during simulation, and as a perturbation step size during linearized analyses.

Integration Step Size Control
Variable step numerical integration techniques use the error controls in selecting a step size. In general, the
smaller the error controls, the greater the accuracy of the numerical integration, but also the longer the
execution time. Likewise, as the error controls become larger, less accuracy is achieved during numerical
integration. Based on this generality, it would seem that you should set the error control as large as possible,
while still maintaining a desired level of accuracy, in order to minimize the amount of CPU time expended.
In practice, however, this is not always true.

By "easing off" on the error control values you may introduce "accepted" errors into the model which, while
accepted for the integration of one state, may prevent another state from satisfying its error criteria. This will
not only result in inaccurate integration, but the simulation will also exhibit very poor performance; it might
not even make any progress at all! This type of poor performance often occurs in highly nonlinear systems
where the sensitivity of perturbing certain states is very high with respect to the other states in the model.
Usually, the error controls should be "tightened up" (made smaller) for such states. You should keep
decreasing the error control until you reach a point of diminishing return, i.e., when no more gains in
accuracy and execution time are noticed.

You may have to experiment with several short simulation runs to find the "optimal" values for the error
control. Then, for longer transients, you can be assured that your simulation will run in an efficient manner.

X
•

1=-X 1

2X
•

2=-1000X
for time 0 ≤ t ≤ TMAX

Reference Manual
Integration Method Selection Guidelines

162
As a general rule, the default value of 0.001 (for non-switch state and 1.E-6 for switch state) error control
values should provide you with satisfactory performance during simulation. For further discussion of
numerical integration techniques and error controls, see Ap. B: Guide to Numerical Integration.

Setting Error Controls
Error controls are altered from their current values when new values are entered in the appropriate
component data tables. Values will be typed as double precision real numbers with a maximum of 7
significant digits. The default value is 0.001 (for non-switch states, and 1.e-6 for switch states). You may also
enter the data in exponential format.

Setting Global Error Controls
The error controls are normally set on a state-by-state basis. However, you can easily adjust error controls
affecting continuous states by setting the “Multiply Error Controls” analysis setting, as shown in Figure 77.

Figure 77 Multiply Error Controls Setting

Another method is to use appropriate analsyis commands to globally increase or decrease the size of affected
error control values. To use this approach, create an auxiliary input file that contains the following command:

MULT INT ERROR BY = multiplier affects only continuous states

Likewise, there are additional analysis commands that allow you to globally control switch states, and/or all
states, using the commands:

MULT SW ERROR BY = multiplier affects only switch states
MULT ERROR BY = multiplier affects all states

These analysis commands (or analysis form setting) causes each affected element of the error vector to be
multiplied by the value "multiplier". For example, to decrease all continuous state error controls by a factor
of 100 (*.01), use:

MULT INT ERROR BY =.01

The MULT INT ERROR BY analysis command can be very useful when adjusting the relationship between
CPU time and numerical accuracy in your model. The BCS GEAR, STIFF GEAR, and ADAMS integration
methods all use an "overall error control value", calculated as an "average" of all the ERROR CONTROL
values. Thus, this command, which most easily changes this "average" value, is best suited for investigating
the effect that changing error controls has on your simulation accuracy and performance (for these integration
methods). For the RUNGE-KUTTA method, however, the individual ERROR CONTROL values are used
for each state.

Note: Please exercise care when changing error control values, either individually or globally. These
settings control the accuracy and performance of your simulation. Large changes in error
controls may result in incorrect results and/or extremely long solution times.

163Chapter 1: Reference Manual Topics
Interactive Simulation
Interactive Simulation
See also: User Guide, Chapter 4 - Interactive Simulation

You can perform a simulation in an interactive mode during which model data can be changed, and plots
displayed as the simulation progresses. Interactive simulation is useful because you can monitor results and
change input parameters while the simulation is running, and stop it if the results are undesirable.

Components from the is (interactive simulation) library are used to setup the interactive simulation. This
library contains interactive widgets for generating X-Y plots, strip charts, and input widgets that allow you to
interactively vary different parameters and variables during a simulation. For example, while the simulation
is running, you can vary a compensator gain using a “slider” widget, and then see the effect it has on your
system with data plotted in a strip chart.

For complete information on how to setup and run an interactive simulation, refer to the User Guide, Chapter
4 - Interactive Simulation.

Linear Model Generation Analysis
See also: "Analysis Data Form"

"Linear Model Generation Method"

The generation of a linear model from a (generally) nonlinear model is the foundation for all of Easy5's
linearized analysis tools. As such, this analysis can be very helpful in analyzing your model or the results from
other Easy5 analyses. Because it is created automatically about any operating point, you need not maintain
separate versions (linear and nonlinear) of your model. It is a very fast and inexpensive analysis to perform.

You should use this analysis as a complement to simulation. It provides a vitally needed picture of the system
stability at a simulation starting point and is the basis for selecting integration methods and time increment
values for fixed step integration methods.

Types of Linear Model Generation Analysis
Two types of linear models can be generated, depending on what you want. A simplified form linear model,
used only to calculate the Jacobian and eigenvalues, is the fastest and most commonly used form of this
analysis. The full form linear model generates the full set of systems matrices. This is described in the
following section.

The Simplified Form Linear Model
The Linear Model Generation analysis calculates a linear approximation of your nonlinear model about any
operating point, x0. The linear model is in the simplified form:

where:

A = nxn stability matrix (or Jacobian)

x· Ax
x x0=

=

Reference Manual
Linear Model Generation Analysis

164
x = state vector of length n

 = rate vector of length n

This model calculates the stability matrix, or Jacobian, of the linearized system model. This is used to
calculate the eigenvalues of your system. This analysis can be performed on both continuous and sampled
data models; it automatically selects the appropriate analysis method. This form requires no specification of
any inputs or outputs. Eigenvalues are calculated as specified by the user in the Linear Model Generation data
form.

The Full Form Linear Model
A full form linear model can be generated about any operating point, x0, by specifying a set of inputs, u, and
a set of outputs, y. A linear model will be created of the form:

x·

165Chapter 1: Reference Manual Topics
Linear Model Generation Analysis
= Ax + Bu + Kx

y = Cx + Du +Ky

where:

A = nxn system Jacobian (stability matrix), where n = the number of states

B = nxm system input (or control) matrix, where m = the number of inputs

C = pxn system output matrix, where p = the number of outputs

D = pxm direct transmission gain matrix

Kx = constant rate vector

Ky = constant output vector

u = system input vector of length m

y = system output vector of length p

x= system state vector of length n

 = system rate vector of length n

The two constant vectors Kx and Ky are calculated so that the rate, x0, and output, y0, match the
corresponding terms of the nonlinear model at the chosen operating point, x0, and u0.

If you choose to generate this form of the linear model, and choose to calculate eigenvectors, the eigenvectors,
or modal matrix, of the system will also be calculated, along with the "observability" matrix (the B matrix in
modal coordinates) and the "controllability" matrix (the C matrix in modal coordinates).

Setting up a Linear Model Generation Analysis
All specifications for performing a linear model generation analysis are defined in the Linear Model
Generation Analysis Data Form. To access this data form, select Analysis from the main menu bar, then select
Linear, and then Linear Model Generation... or press F9. Figure 78 shows the linear model generation data
form.

x·

x·

Reference Manual
Linear Model Generation Analysis

166
Figure 78 Linear Model Generation Analysis Form

This figure shows all the options and data fields that could possibly appear on this form. The sections that
follow describe how to fill in this form. To save the settings in this data form, and to fill in the title, time and
initial operating point data fields, refer to “Analysis Data Form”.

Defining Linear Model Inputs
The default setting for model Inputs and Outputs is blank (None). This results in the calculation of only the
Jacobian A matrix. However, if you define a set of linear model inputs (and outputs) as part of the Linear
Model Generation analysis data, the full form of the linear model (i.e., the A, B, C, and D matrices) will be
calculated. Any set of parameters, variables, and/or states can be defined as inputs.

167Chapter 1: Reference Manual Topics
Linear Model Generation Analysis
The linear model input variables data form is used to define the set of linear model inputs. You can enter
Easy5 parameter, variable, or state names directly in this form by selecting a value field and typing in the data.
Or you can use the Model Explorer “pick” feature. To do this, click on the input value field where you see an
elipsis. This opens the Model Explorer window as shown in Figure 79, which displays a list of possible input
names for the selected component. Select a name from this list and Easy5 copies it into the analysis form.

Figure 79 Linear Model Generation Analysis Form with Model Explorer

Defining Linear Model Outputs
If you want to generate the full form of the linear model, you must define a set of inputs and a set of outputs.
The outputs can be any set of states or variables in your model. Define linear model outputs in exactly the
same way as the set of inputs. Use the Outputs field in the linear model data form located below the Inputs
field.

Partial Form Linear Model
If you have not specified either the input or the output vector, the full form linear model cannot be created.
However, a partial form linear model, depending on whether the input or output vector was omitted, can be
created. That is, if you have omitted the input vector, only the A and the C matrices can be calculated (the B
and D are undefined) as shown below:

 = A
y = Cx

Likewise, if you have omitted the output vector, only the A and B matrices will be calculated as shown by the
following form for the linear model:

 = Ax + Bu

x·

x·

Reference Manual
Linear Model Generation Method

168
Controlling the Calculation
Controlling the linear model generation calculation may be useful especially for models with large numbers
of states (n>500), as the linear model generation computational time increases approximately with n-cubed!
The additional computational effort for eigenvalues and eigenvectors depends largely on how diagonal your
A matrix is -- so it can be significant. You also may not be interested in the eigenvalue or eigenvector results
at all.

Thus, you may control the linear model generation calculation by selecting the "Calculation:" options
settings. Possible values are:

 Eigenvalues/Eigenvectors - both eigenvalues and eigenvectors are calculated (default)
 Eigenvalues only - no eigenvectors are calculated
 Neither - neither eigenvalues nor eigenvectors are calculated

Saving the Linear Model System Matrices
You may save the linear model system matrices and import the data into the Easy5 Matrix Algebra Tool
(MAT). If you wish to save the system matrices (A,B, C and D) in a special file, select "Yes" following the
"Save System Matrices." A "Save As:" input field will appear requesting a filename. Select the input field and
enter a filename.

This file is written using the auxiliary input file format, and only contains the system matrices A, B, C, D,
Kx and/or Ky matrices, depending on the form of the model.

In the Matrix Algebra Tool, you can load the linear model data from this file by entering a simple command.
The data from this file can also be loaded back into Easy5 models using the SM (System Matrix) or SR
(System Matrix / Reduced Format) components.

Linear Model Generation Method
A Linear Model Generation analysis may be requested on either continuous or sampled data models. Easy5
detects the type of your model and selects the correct analysis technique. Whenever one or more discrete states
(delay or sample state) is active anywhere in your model, the whole model is treated as a sampled data model.
The following sections discuss the theory behind the Linear Model Generation analysis.

See also: "Linear Model Generation Analysis"

Continuous Systems
A nonlinear system in state space form can be defined by the equations:

 = f(x,u,t)
y = g(x,u,t)

Note: Controllability and observability matrices, per the appropriate linear model form, require
calculation of eigenvectors.

x·

169Chapter 1: Reference Manual Topics
Linear Model Generation Method
where:

 = n-dimensional state vector

u = m-dimensional input vector

y = k-dimensional output vector

A linear model of this nonlinear system can be expressed as:

 = Ax + By + Kx
y = Cx + Du +Ky

where:

A = n x n system stability matrix

B = n x m system input matrix

C = k x n system output matrix

D = k x m system feed through matrix

Kx = rate bias vector at operating point

Ky = output bias vector at operating point

The elements of A, which make up the stability matrix, are related to the partial derivative of an element of
the nonlinear function f, with respect to an element of the state vector x at the operating point x0:

This matrix shows you how each state in your model affects the rates (first derivatives) of the system and is
the basis for determining your system eigenvalues. The A matrix is printed in the Analysis Output Listing
file. The rates are the row designators and the states are the column designators. For example, for a given
second order nonlinear system, the stability matrix may look like that shown below.

The rate of state S_Out_INR can be related to both states S_Out_INR and S_Out_INP as:

and likewise:

S_Out_INR S_Out_INP

S_Out_INR -0.5000 -1.0000

S_Out_INP 1.0000 0.0000

x·

x·

aij
∂fi x u t, ,()

∂xj

--------------------------=

u = uo

x = xo

d
dt
----- SoutINR() 0.5 SoutINR()⋅– 1.0 SoutINP()⋅–=

Reference Manual
Linear Model Generation Method

170
Similarly, the B matrix is the matrix of partial derivatives of the elements of the nonlinear function f with
respect to the elements of input vector u at the operating point x0:

The C matrix is the matrix of partial derivatives of the elements of the output vector y with respect to the
elements of the state vector x at the operating point x0:

The D matrix is the matrix of partial derivatives of the elements of the output vector y with respect to the
elements of the input vector u:

The bias vectors Kx and Ky are defined by:

Kx = f (xo, uo, t) - Axo - Buo
Ky = g (xo, uo, t) - Cxo - Buo

and are used to match the rates and outputs of the linear system with the rates and outputs of the nonlinear
system.

For more information on linearized analysis of control systems, see Reference 18 at the end of this manual.

The Numerical Method of Linearization
A perturbation method is used to calculate the linear model. To calculate the A and C matrices, each
continuous state is perturbed, in turn, by an amount equal to the step size or error control associated with
this state.

The effect on the system rates and output is then measured and used to calculate each column of the A and
C matrices, as follows:

d
dt
----- SoutINP() 1.0 SoutINR()⋅=

bij
∂fi x u t, ,()

∂uj
--------------------------=

u = uo

x = xo

cij
∂yi

∂xj
-------=

u = uo

x = xo

dij
∂yi

∂uj
--------=

u = uo

x = xo

171Chapter 1: Reference Manual Topics
Linear Model Generation Method
where:

j = n-dimensional perturbed rate vector
o = n-dimensional rate vector at operating point o,uo

yj = k-dimensional perturbed output vector
yo = k-dimensional output at operating point o,uo
Aj = th column of system stability matrix
Cj = th column of system output matrix
ej = th element of error control vector

This process is continued for all n columns of A.

To calculate the B and D matrices, each input is perturbed by 1% of its nominal value (or, 2-6 if its nominal
value is smaller than 10-8). The effect on the system rates and output is measured and is used to calculate each
column of the B and D matrices as follows:

where:

Bj = jth column of the B matrix
Dj = jth column of the D matrix
uj = n-dimensional perturbed input vector
uo = n-dimensional input vector at operating point

System Eigenvalues of the Linear Model
The eigenvalues of the linear system:

= Ax

are defined to be the solutions x of the equation:

det (A - λI) = 0
Their significance lies in the fact that these systems usually have solutions of the form:

x(t)=UeltU-1xo
where:

λ = system eigenvalues
t = time
U = the system modal matrix (its columns are the system
eigenvectors)
xo = operating point

Consider an element of the solution for x(t), the function elt, where λ is a complex scalar. If the real part of

λ is negative, this represents a function that eventually damps out as t increases. On the other hand, if the

Aj

x·j x·o–

ej
----------------= Cj

yj y– o

ej
-------------=

x·
x· x·

x·

Bj

x·j x·– o

uj u– o
-------------= Dj

yj y– o

uj u– o
-------------=

x·

Reference Manual
Linear Model Generation Method

172
real part of λ is positive, the function will grow without bound as t increases. Finally, if the real part of λ is

equal to zero, the function will oscillate with a frequency equal to the imaginary part of λ as t increases. The

response of your system, its time domain behavior, x(t), is characterized by the values of λ, the eigenvalues
of the system stability matrix.

Thus, the system eigenvalues are a set of n complex numbers that characterize the dynamic behavior of the
system in a region about the chosen operating point. Existence of an eigenvalue with a positive real part
indicates an unstable system about xo.

For a linear system to be asymptotically stable (or, in other words, for a given step input to have all outputs
eventually "damp out"), all system eigenvalues must have real parts less than zero.

Highly Nonlinear Systems
The stability predicted by the system eigenvalues is stability of a system at a Steady-State operating point (all
rates equal zero) and subject to small disturbances. System eigenvalues do not necessarily predict the overall
stability of nonlinear systems as shown in Figure 80.

173Chapter 1: Reference Manual Topics
Linear Model Generation Method
Figure 80 Nonlinear Stability Example

In this example the state derivative is shown as a highly nonlinear function of the single state variable x.
The arrows on the plot of the resulting function show the time domain trajectory that the state and state
derivative (rate) would follow from any initial condition, x.

For the values of x shown, there is a region of asymptotic stability and a region of instability. Initial values of
x in the stable region cause the system to reach the Steady-State operating point, xss Initial values of x greater
than x2 will result in divergence to large positive values.

The eigenvalue of this simple system is the partial derivative ∂ /∂x. The simple criterion of a negative real
eigenvalue for asymptotic stability specifies that the system is unstable in the region x1 to x2. However, in this
example the system will converge to the Steady-State point, xss. In the region x3 to x4 the eigenvalues criteria
indicate that the system is stable, while in fact it will diverge from this region.

Importance of a Steady-State Operating Point

The example above also illustrates the risk of using eigenvalues alone as a measure of system stability at points
other than Steady-State operating points. However, insights into system behavior and other useful

x·

x·

Reference Manual
Linear Model Generation Method

174
information can still be obtained from such linear models, especially because they can always be easily verified
by the nonlinear simulation capabilities of Easy5.

The method of model linearization used by Easy5 may result in erroneous predictions of stability for models
linearized at "highly nonlinear" operating points. Because of this potential problem, Easy5 performs a
linearity check as part of the Linear Model Generation analysis, and you are warned by the program if your
model exhibits "highly nonlinear" behavior at the operating point specified. See the "Measure of Linearity"
section below for more information on this linearity check.

The Measure of Linearity
As a measure of the validity or quality of the linear approximation of the nonlinear model, the stability matrix
calculation described above is repeated using one half of the perturbations used in the initial calculation. The
ratios of the derivatives are calculated using the two step sizes evaluated. Clearly, as shown in Figure 81, if the
model is fairly linear in the region of the operating point, the ratios will be close to one.

Figure 81 Linearity Measure of Nonlinear Model

When these ratios differ by more than ten percent, this is noted in your output listing. If one or more such
elements are detected, the count of such elements is printed along with a list of ratio elements exceeding this
tolerance.

If Easy5 warns you of poor linearity in your model, one or more of the following conditions may be present:

1. The perturbation step size is too large. You can make the perturbation step size smaller for a given
state by reducing its ERROR CONTROL value.

Note: The current version of Easy5 performs the linearity check only when you do not specify
input and output vectors as part of the analysis description.

175Chapter 1: Reference Manual Topics
Linking External Code
2. The model is so nonlinear at this operating point that a meaningful linear approximation does not
exist. In particular, there are two common values for the ratio which indicate certain behavior at
operating points:

 If the RATIO = 2.000, this indicates that the state's perturbation has "stepped into" a region of
saturation. To eliminate this effect, either temporarily remove the saturation effect or adjust the step
size to avoid it.

 If the RATIO = 0.000, this indicates that the state's perturbation has stepped into a deadzone. In
other words, no effect is felt by the system rates with respect to changes in this state's value while in
the deadzone. Either temporarily remove the effect of the deadzone or adjust the step size to avoid it.

3. Your model may contain errors that are causing extreme nonlinearities.

Stability Analysis for Sampled-Data Systems
Easy5uses a state transition approach given by Kalman and Bertram for assessing the stability of sampled data
systems. This approach determines a so called transition matrix for every sampling rate of the system. The
autonomous system behavior between sample instants is given completely by the continuous system Jacobian
matrix. At sampling instants, the system behavior is described by a combination of transition matrices for
each sampling rate. See Appendix C for more information on the theory behind discrete components.

A complete discussion of the types of states defined in discrete components (delay and sample states) can be
found in “States”. For a good background on analysis of sampled data systems, see Suggested Reading
References 17 and 19 at the end of this manual.

Coordinate System Transformation
While s-plane results apply to continuous systems, the z-plane is the correct coordinate system for
interpreting the stability of digital systems where time is, by definition, always at a sampling interval. For
sampled data systems it is often convenient to be able to interpret stability in terms of the continuous system
so that the results can be correlated with the known characteristics of the continuous plant dynamics.

For convenience, all Easy5 linearized analyses give results in both the z-plane and the s-plane for sampled data
systems. Also, you can specify two of the discrete standard components, DF and DL, in terms of s-plane
(Laplacian) coefficients if you are uncomfortable with working in the zplane. Easy5 uses a numerical
transformation technique known as a Tustin transformation with prewarping to approximate the
transformation of coordinates from the s-plane to the z-plane for filter coefficients.

Linking External Code
See also:"Compiling External Code"

"Executable Model"

User Code and Library components may contain references to user-defined external subroutines or functions.
These subroutines and functions are "external" in that they reside outside your model. The external user
supplied routines must first be compiled before linking and creating an executable model. Recommended
Fortran and C compilation options are listed in “Compiling External Code”.

Reference Manual
Linking External Code

176
During the link process, user object code will always be searched for global references before Easy5 standard
routines. There are different methods for linking user-defined routines. Any one, or a combination of these
methods may be used, depending on the circumstances. Each method is described in the following sections.

Linking Routines Using the Build Menu
 To link user supplied routines, select Link External Object from the Build menu. A dialog box will appear
requesting a file name or multiple file names separated by spaces. Object files or object libraries may be linked
by typing the names into this dialog box.

Figure 82 shows an example of entering three object files. If several files need to be linked, you may use a “link
list” to enter the multiple file names as described in the next section.

Figure 82 Example of Using the Link External Object Dialog

Using Link Lists to Link External Code
A link list is a file that contains a list of all files to be linked. The file names must be listed one per line in the
link list file. The link list file should not exceed 256 characters per line. The link list file should not exceed
1024 characters, including a blank spaces used as delimiters between files. To avoid reaching this limit,
minimize the usage of large pathnames and filenames, and use object libraries when possible. See “Linking
Routines Using an Object Library”.

If many object files need to be managed and linked, it is much better to store the object files in an object
library. The object library can then be linked by simply entering its name in the Link External Object dialog,
as described on the previous page.

Having created this external link list, the link list filename is entered the dialog box, preceding the first
character with a "+" to distinguish the link list from a single object file. For example, assume that the three
object code file names shown in Figure 82 are to be linked using a link list.

Note: The Link External Object dialog field width is 80 characters long. If more than 80 characters
are needed to display the object files to be linked, then use a link list as described in the
following paragraph.

177Chapter 1: Reference Manual Topics
Linking External Code
A link list file named "object_code" (or any file name) can be created, listing the object file names one per
line. Figure 83 shows an example of entering the "object_code" link list file into the dialog. Easy5 will strip the
"+" character, and open the file and read the list of filenames to be linked.

Figure 83 Example of Using a Link List

Linking Routines Using the EASY5_OBJECT Variable
User supplied routines may be linked outside Easy5. The file names of the user supplied routines to be linked,
are predefined before running Easy5 by defining the environment variable EASY5_OBJECT. This
environment variable should be defined in the shell that Easy5 will be run from, and only needs to be defined
one time. To do this, enter the following command in the shell from which Easy5 will be run:

setenv EASY5_OBJECT <my_object> (C shell)
export EASY5_OBJECT <my_object> (Bourne and Korn Shell)
set EASY5_OBJECT=<my_object> (Windows Easy5 Command Shell)

where: my_object is the name(s) of the object code file(s).

For example, to use the EASY5_OBJECT variable to link three user supplied routines (Linux object files
named code1.o, code2.o, and code3.o; or Windows files named code1.obj, code2.obj, and code3.obj), before
running Easy5, you would perform the following steps:

1. Open a command shell window from which Easy5 will be run. For Windows, use an Easy5 Command
Shell (or set the variable via your Control Panel).

2. In a command shell, enter:

setenv EASY5_OBJECT "code1.o code2.o code3.o"(C Shell)
export EASY5_OBJECT="code1.o code2.o code3.o" (Bourne, Korn
Shell)
set EASY5_OBJECT=code1.obj cod2.obj code3.obj (Windows Easy5
CommandShell)

3. Enter easy5x to open Easy5.

4. While running Easy5, you may verify that the object code has been linked by selecting Build > Link
External Object. The Link External Object dialog box pops up, and the linked object file names
appear in the dialog.

If a large number of user supplied routines need to be linked, a link list may be used to better manage the
process. The EASY5_OBJECT variable may also be set to a link list.

Reference Manual
Linking External Code

178
For example, assume that the three object file names listed in step 2 are placed in a link list file named
object_code.

The command to link this link list is:

setenv EASY5_OBJECT +object_code (C shell)
export EASY5_OBJECT=+object_code (Bourne, Korn shell)
set EASY5_OBJECT=+object_code (Windows Easy5 command shell)

Linking Routines Using an Object Library
An object library is a file that contains one or more modules in object file format. Object files are created
using a (Fortran or C) compiler. When a program references an object name not explicitly included in the
program code, the linker attempts to resolve that reference externally. The linker searches any object libraries
(specified in the link invocation) for the object reference and then, if found in an object library, extracts only
the particular object file, not the entire object library. This method provides an efficient means of managing
and linking large numbers of user-supplied routines.

Naming conventions differ slightly between Linux and Windows platforms with respect to default file tags
used in creating and managing object library files. These differences are summarized below:.

For a component library, the object library name will always be the library two-character name (nn) with the
appropriate platform-appropriate object library file tag extension (.a or .lib):

<nn>.<lib_tag> Object library for component libary nn

To create or manage an object library, perform the following steps as appropriate:

1. Open an Easy5 Command Shell window by selecting File > Open Command Shell... from the Easy5
main menu.

2. Move (or copy) all source files (.f or .c files) to be compiled and archived to a separate directory
(<compile_dir>). This is not necessary but is recommended to make it easier to execute global compile
and library management commands.

3. Navigate to this directory using the command:

Note: A maximum of 135 characters are allowed in a link list, including one blank space per
filename. To avoid reaching this limit, minimize the usage of large path names and filenames.
If many object files need to be managed and linked, it is better to archive the files into an
archive library as described in the next section.

Default File Type Tag Name Linux Windows

Fortran source code file <fs_tag> .f .f

C source code file <cs_tag> .c .c

Object code file <obj_tag> .o .obj

Library object file <lib_tag> .a .lib

179Chapter 1: Reference Manual Topics
Linking External Code
cd <compile_dir>

4. From the <compile_dir> directory, perform a global compile by entering the appropriate compile
command:

easy5x -fc *.f Fortran code

easy5x -cc *.c C code

This ensures that all object files are compiled in such a way that they are compatible with Easy5.

5. To create an object library containing all object files use the command:

easy5x -lc <nn> *.<obj_tag>

For example, under Windows to create an object library named xy.lib using all locally available
object files, use the command:

easy5x -lc xy *.obj

6. To update an object library nn with new object files or to replace a current object file with updated
code from <filename>.<obj_tag>, use the following command

easy5x -lu <nn> <filename>.<obj_tag>

7. To remove an object file from an existing object library nn.<lib_tag>, use the following command:

easy5x -lx <nn> <filename>.<obj_tag>

8. To list the contents of an existing object library nn.<lib_tag>, use the following command:

easy5x -ll <nn>

Linking Library Component Routines
External code called from within Library components must also be linked before creating the executable. The
external object code file name(s) can be entered directly into the Link External Object Dialog. Alternatively,
the external routines can be automatically linked if all object code is put into an object library named
<nn>.<lib_tag>, where <nn> is the two character tag name of the Component library. This is the easiest and
the recommended method of linking external Library Component routines. Please see “Linking Routines Using
an Object Library” for more details.

Note: When creating an Easy5 executable model containing components from the nn library, the
component library’s object library is automatically linked; there is no need for you to
explicitly reference it.

Reference Manual
Library Component Code

180
Library Component Code

Using Variable Dimensions in Library Component Code
If you specify one or more library component inputs using variable dimensions, you need to reference the
value that is later assigned to the dimension parameter in your library component code. To reference a
dimension parameter, enclose the dimension parameter in quotes (“) whenever you use it in your library
component code. For example, suppose that you specify a Library component input XV as being dimensioned
(I,J). The sequence of commands is described as follows:

1. It is assumed that for this library component, you have already defined dimension parameters I and J
using the Configuration button for the main component properties. If you have not done this already,
select the Component Properties button at the top left of the Input/Output Definition panel, and
select the Configuration button, resulting in a Configuration dialog as shown in Figure 85. In this case,
we have assigned dimension parameters I and J, appropriately.

Figure 84 User Code Editor Array Example

2. Select New > Input from the Library Component Editor, and specify the correct input name (“XV”)
in the Name field (of the properties panel).

3. Select Array, and then enter “I” and “J” (no quotes) in the corresponding Size fields for input XV.

4. Enter other input properties., as appropriate. The resulting Input Properties form should look
similar to that shown in Figure 85.

181Chapter 1: Reference Manual Topics
Library Component Code
Figure 85 User Code Editor Array Example

5. Use a similar approach to define other variable-dimension input and outputs.

Then, to use the dimension parameters I and J in your code as indexes of a nested DO loop, enclose the mode
names in quotes:

DO L_AA = 1, "I"

 DO M_AA = 1, "J"

 <output> = ... XV_AA(L_AA,M_AA)

 enddo

enddo

The executable model builder program replaces the quoted dimension parameters with the values that you
assign in the respective component data table when the executable model is created.

Using Integer or Logical Variables in Library Component Code
Easy5 declares each name defined as a Library Component input or output as Real*8. Therefore, if you
want to use integer or logical variables in your library component code, they must not be declared as inputs
or outputs. If an input must be used as an integer, such as the index on a DO loop, or an integer must be
transmitted to other components as an output, use the following method. For example, II is an input to the
component and that JJ, calculated in the component, is an output.

1. Define dummy names for communicating these variables to and from other components such as XII
and XJJ, and specify these names as an input and output.

Reference Manual
Library Component Code

182
2. Assign the appropriate input value to a local variable in the component code. For example, II_TT =
XII_TT

Configurations
The Library Component allows for multiple configurations in a single component with a different icon for
each configuration, plus the ability to setup different classes of data, define ports with unique names, force
connections to specific ports, and enter conditional code for different configurations. Please see User Guide,
Chapter 12 - Library Components, for details.

Port Name Specification
Click on New to add a port. The Port Number field is only used internally, but the Port Name field is what
your users see, so choose it carefully. You can use up to 12 alphanumeric characters (no spaces or underscores)
in a port name.

Figure 86 Library Component Port Properties Specificaiton

Component Libraries
Select Library > New. A selection box, as shown in Figure 87, shows available editable libraries. In this
example, the directory contains only one editable library; each library contains one or more Library
components. This dialog lists all edit-enabled component libraries in your working directory, or as assigned
per library environment variables. You may also change directories to access other Component libraries. Select
the desired Component library from this dialog list. The Component library appears in the Library Menu.
See the User Guide, Chapter 11 - Library Developer Toolkit, the section "Library Search Order" for more information.

183Chapter 1: Reference Manual Topics
Matrix Operations
Figure 87 Edit Library Dialog

Matrix Operations
Matrix operations in Easy5 may be performed using a set of shorthand matrix expressions, or, you may call
Easy5 subroutines that perform special matrix operations. Both methods will be covered in the following
sections.

Matrix Equations
Easy5 includes a set of shorthand matrix equations that you can use in your Fortran code.

The following notations are used in these tables:

 Lowercase letters represent the elements of matrices, e.g., Aij = i, j element of matrix A.

 N and M represent the row and column dimensions of matrices, respectively. For example, matrix A
has dimensions A(NA,MA).

As shown below, most common matrix arithmetic calculations can be placed in a Fortran component using
a single line command.

Caution: These matrix equations cannot be used in Library components; instead, use the equivalent
matrix subroutines described in the next section.

Reference Manual
Matrix Operations

184
Table 1-19 Easy5 Matrix Equations

Matrix Arithmetic Format Mathematical Description of Operation Dimension Requirements

Addition

/A/=/B/+/C/

aij = bij + cij NA = NB = NC

MA = MB = MC
Subtraction

/A/=/B/-/C/

aij = bij - cij NA = NB = NC

MA = MB = NC
Multiply

/A/=/B/*/C/

 MB

 aij = E bik ckj

 k = 1

NA = NB

MB = NC

MA = MC
Cross-Product

/A/=/B/X/C/

a1 = b2c3 - b3c2

a2 = b3c1 - b1c3

a3 = b1c2 - b2c1

NA = NB = NC = 3

MA = MB = MC = 1

Dot Product

/A/=/B/./C/

 3

A = a1 = E bici

 i=1

NA = MA = MB = MC = 1

MB = NC = 3

Linear Equation

Solution

/A/=/B/-1/C/

Note: The Matrix B is destroyed by this
operation.

B A = C

A = B-1 C

NB = MB = NA = NC

MA = MC

Transpose

/A/=/B/T

aij = bji NA = MB

MA = NB

185Chapter 1: Reference Manual Topics
Matrix Operations
The following rules apply to matrix expressions:

1. Each matrix expression must begin on a new line in your code and have a slash, “/”, as its first
nonblank character.

2. All matrix expressions must have a slash before and after each matrix quantity name. An equal sign,
“=”, must follow the first matrix name in the expression.

3. Only one matrix operation can be used on each line.

Matrix arithmetic statements may have one or two input matrices, designated /B/ and /C/ as shown in the
figures. You may use your own names in place of /B/ and /C/. The dimensions of these matrices must be
defined in the inputs section at the top of the Fortran component data form. If /B/ or /C/ are state or
parameter matrices, they may appear at any point in your Fortran component. If they are variable matrices,
they must be defined before the matrix arithmetic expression which uses them occurs in the model.

The output quantity from the matrix expressions is designated by /A/. The dimensions of /A/ may be defined
by a previous matrix expression (i.e., /A/ is a local dummy matrix and not an output of the component), by
defining the /A/ matrix to be an output of the component, or by setting /A/ equal to a vector or array Fortran
variable. If the dimensions of /A/ have not been defined, /A/ will be dimensioned based on the dimensions
of /B/ and /C/.

Eigenvalues

/A/=/B/E

ai1 - Real (ei)

ai2 - Imag (ei)

ei = Complex

eigenvalues of B

NA = NB = MB

MA = 2

Identity Matrix

/B/ = /1/

bij = 1 if i = j

bij -= 0 if i = j

Dimensions of /B/ must be
qualified by another statement.

Null Matrix

/B/ = /0/

bij = 0 for all i,j Dimensions of /B/ must be
qualified by another statement.

Equality

/A/ = /B/

aij = bij NA = NB

MA = MB

Table 1-19 Easy5 Matrix Equations

Matrix Arithmetic Format Mathematical Description of Operation Dimension Requirements

Caution: The /B/ and /C/ matrices must be defined as “Inputs” in the Fortran component data form.
(You may use your own names in place of /B/ and /C/).

Reference Manual
Matrix Operations

186
Matrix Operation Subroutines
The following Fortran subroutines can be used within your Easy5 Fortran and Library Component code to
perform a variety of matrix operations. These operations use the following conventions:

Matrix A is defined as A (rA,cA)

where: rA,cA= row, column dimensions of A, entered as Integer values

Load Entire Matrix with a Scalar Value

Matrix Addition

Matrix Subtraction

Matrix Multiply

Caution: The matrix inverse expression (linear equation solution: /A/=/B/-1/C/) may only be defined
one time in your model. If you need to use this more than once, make a “call” to the matrix
operation Subroutine LUEQS as defined in the next section.

Syntax: CALL MATLOD (A, VALUE,rA,cA)

Operation: /A/ = / VALUE/ where rA,cA are row, column dimensions of A

Syntax: CALL MATADD (A, B, C, rB,cB)

Operation: /A/ = /B/ + /C/

Restrictions: rB = rC, cB = cC

Syntax: CALL MATSUB (A, B, C, rB, cB)

Operation: /A/ = /B/ - /C/

Restrictions: rB = rC, cB = cC

Syntax: CALL MATMPY (A, B, C, rB, cB, cC)

Operation: /A/ = /B/ * /C/

Restrictions: cB = rC

187Chapter 1: Reference Manual Topics
Matrix Operations
Matrix Transpose

Matrix Cross-Product

Matrix Dot Product

Matrix Equality

Matrix Inverse

Syntax: CALL TRANS (A, B, rB, cB,)

Operation: /A/ = /B/ * /C/

Restrictions: rB = cA, cB = rA

Syntax: CALL CRSPRD (A, B, C)

Operation: /A/ = /B/ X /C/

Restrictions: rB = rC, cB = cC = 1 or 0

Syntax: CALL DOTPRD (A, B, C, N)

Operation: /A/ = /B/ . /C/

Restrictions: N= rB = rC

Syntax: CALL XFR (B, A, N)

Operation: /A/ = /B/ where N is length of A,B

Restrictions: N= rA = rB

Syntax: CALL LUEQS (A, B, C, IA, NA, NB, MA, MB, MC, FPZ, IEZERR)

Operation: /A/ * /B/ = /C/ where B is the solution or:

/B/ = /A/ -1 /C/ (Easy5 shorthand notation and matrix A is destroyed!)

Reference Manual
Matrix Editor

188
Matrix Editor

Creating a Data Table
The first step is to use a component that matches the requirements. Easy5 provides a 2-dimensional table
component, the FV - Two-dimensional Function. Add this to your model, connect the inputs, and edit/open
the data table as shown in Figure 88. Select the Table of 2 Var input field; this changes to Edit Table. Select
Edit Table to open the editor.

To size the table, select Edit > Resize, The resize dialog will appear as shown in Figure 88. Set the independent
variable 1 to 3 to accomodate the 3 Mach numbers, and set the independent variable 2 to 2 to match the
number of altitude inputs.

Inputs: A Multiplier matrix

C Right-hand side (identity)

NA Order of matrix A

NB No. of columns of B and C

MA Row dimension of A

MB Row dimension of B

MC Row dimension of C

FPZ Floating point precision

(Usually set to 1.E-14 or 1.D-14)

Outputs: B Solution matrix, if IEZERR=0

A The LU decomposition of A

IA Integer work array of length NA

IEZERR Success flag
=0 Successful
=n Error, A(n,n) is singular

189Chapter 1: Reference Manual Topics
Matrix Editor
Figure 88 Two-Dimensional Table Component

Having created the data table and sized it, you can enter data directly into the data cells using the Easy5
Matrix Editor.

After you have created the table, you can enter data, or copy it from an external spreadsheet program, or,
create the data in an external file and import the data into the table.

The tabular data used in this example is small, and therefore it is easy to manually enter the data into the data
cells.

1. Just select the first independent variable field, and type in the Mach numbers (0.4, 0.6, 0.9).

2. Do the same for the second independent variable, altitude.

3. Enter the dependent data Mdelta–e.

The finished data table is shown in Figure 89. Note that this spreadsheet matches the layout of the original
data table.

Reference Manual
Menus

190
Figure 89 Completed 2-D Data Table

Menus
The menu bar, located at the top of the Easy5 window below the description lines, contains the following
menus:

File Edit View Options Library Build Analysis Submodel Help

These menus are pulldown menus. The selection of these menus, using the mouse or the keyboard is
discussed in “Using Shortcut Keys to Open and Select Menus”. The following sections briefly describe each menu
and the items that they contain.

File Menu
The File menu allows you to perform standard file operations. It contains the following items:

191Chapter 1: Reference Manual Topics
Menus
Figure 90 File Menu

New starts a new model. (The Model Building license feature must be checked out to use this item.)

Open is used to open a new or existing model, and change directory.

Save allows you to save changes to your model.

Save As... saves your model to a different name than the current one. (The Model Building license feature
must be checked out to use this item.)

Model Management is used to manage your model files to purge, delete, rename files.

Open Temporary Settings Editor allows you to create, edit, delete, copy, or rename a temporary settings file
for your current model.

Auxiliary Input File allows you to create, edit, delete, copy, or rename an auxiliary input file.

Reference Manual
Menus

192
Print is used to get hardcopy printouts of your model schematic.

Print Schematic is used to print schematic diagrams to a Windows Meta File formatted graphics file to be
used in Word or PowerPoint. The following print options are available: Current View, Current Schematic,
Entire Hierarchy.

Export Schematic is used to save schematic diagrams to an enhanced Windows Meta File formatted graphics
(.emf) file to be used in Word or PowerPoint. The following export options are available: Current View,
Current Schematic, and Entire Hierarchy.

Document Model create and/or display an ASCII or HTML formatted file that documents the model, listing
all component input/output names, values, description and units. (The Model Building license feature must
be checked out to use this item.)

Open Text Editor... opens the Easy5 Text Editor (or another you designate). This allows you to view and
edit any text file. See “Steady-State Analysis Method” for more information on the Easy5 Text Editor.

Open Command Shell... opens a command shell in the current model path allowing you to enter Easy5
command-line operations, any Korn-shell and/or DOS commands on Windows, or any Linux shell
commands on Linux platforms.

Properties... describes the model by name, version, modifications, and time stamp.

Model Info gives a text-based description of the model.

Exit allows you to exit Easy5.

Edit Menu
(The Model Building license feature must be checked out to use this menu.)

The Edit menu is used to perform standard edit operations. It contains the following items:

193Chapter 1: Reference Manual Topics
Menus
Figure 91 Edit Menu

Cut lets you remove a component from the schematic.

Copy lets you copy a component group to another location on your schematic.

Paste lets you move a group of components into a new model.

Delete lets you delete any connections or components that are currently selected.

Move Group is used to move a group of components to another location on your schematic.

Cancel Operation of an analyis, or similar action that has not yet run.

Import Model From... allows you to import an existing model into your current model.

Add Component... is used to add components to your model and opens the dockable Add Components
window on your schematic pad.

Change Names... allows you to change user-defined names and Fortran names of selected components. (See
“User-Defined Names”).

Label All Connections labels all connection lines.

Delete All Connection Labels removes all connection line labels.

Reference Manual
Menus

194
View Menu
The View menu is to view different aspects of your model. It contains the following items:

Figure 92 View Menu

Zoom In/ Out makes your view of the schematic diagram larger/smaller.

Zoom to Selection makes a selected area larger.

View Entire resizes the schematic block diagram to fit in the window.

Refresh View redraws the schematic to refresh the view.

Explore Model opens a listing of all inputs and ouputs in a Model Explorer window.

195Chapter 1: Reference Manual Topics
Menus
Find Duplicate Names finds and names them and where the are, so you can easily correct them.

Find Highlighted Component locates the currently highlighted component.

Go To Connection End lets you locate a connection’s “to” or “from” component.

Use Abbreviated Names in CDT causes “shortened” names (without their component qualifier and
underscore) to be displayed in any CDT. An Easy5 environment variable, EZ5_VIEW_SHORT_CDT_NAMES,
can also be used to define this as the default behavior.

Show User-Defined Names displays the user-defined names used throughout the model when turned on, or
displays the Easy5 default names when turned off.

Show Output Labels shows all output labels on connections lines (On/Off toggle check box).

Show Port Labels labels all connection lines with port names (On/Off toggle check box).

ShowSubmodel Labels opens a list of the submodels of your model.

Show Invisible Connections makes invisible connection lines visible.

Show Connection Double Arrowheads allows you to search for any duplicate input/output names.

Libraries Used displays a listing of all libraries used in your model.

Easy5 Background Processes... displays running Easy5 background processes.

Options Menu
The Options menu is used to setup options. It contains the following items:

Figure 93 Options Menu

Save Operating Point... saves the operating point calculated during an analysis.

Restore Operating Point... restores an operating point that was saved using the Save Operating Point
function.

Set Operating Point Time... defines the operating point value of TIME.

Automatic Display Results will automatically plot/print analysis output data after analysis completes
(On/Off toggle check box).

Reference Manual
Menus

196
Label New Connections when on (default), automatically labels new connections, when off, doesn’t apply
labels to connection line (On/Off toggle check box).

Library Menu
The Library menu is used to create and manage Library Components. It equires checkout of the Library
Developer license feature, except for certain menu items. For more information see the User Guide, Chapter 12
- Library Components. This menu contains the following items:

Figure 94 Library Menu

Edit Last Component... opens the last Library Component edited (in a given session).

Display Library Generation Listing opens and displays the Library Generation Listing file that was created
during the generation of your Library component using the Easy5 Text Editor. See “Steady-State Analysis
Method” for more information on the Easy5 Text Editor.

Edit Component... lets you open and edit an existing Library Component.

New Component... creates a new Library Component.

197Chapter 1: Reference Manual Topics
Menus
Delete Component... deletes an existing component.

Copy Component... lets you copy an existing component from one library to another.

Examine Component... allows you examine, but not modify, any Library component. This menu requires
checkout of the Library Developer license feature, except for certain menu items.

New Library... create a new component library.

List Libraries... lists all libraries that are available to you.

Delete Library... used to delete only the libraries that you own.

Edit Library Title... allows you to change the title of an existing library.

Edit Library Categories... allows you to define library categories, used to group inputs and outputs in

Library Groups sub-menu is used to define groups within a library.

Convert Library from or to ASCII text, and from a V6 library to the newest library verison.

Build Menu
The Build menu is used to build the executable model. It contains the following items:

Figure 95 Build Menu

Reference Manual
Menus

198
Create Executable builds an executable version of the model before analysis.

Link External Object... links external object code when creating an executable version of your model.

Display Model Generation Listing... displays the Model Generation Listing file created during the Create
Executable using the Easy5 Text Editor. See “Steady-State Analysis Method” for more information on the Easy5
Text Editor.

Display Executable Source File... displays the Executable Source File created during the Create Executable
using the Easy5 Text Editor.

Display C Component Source File... opens and displays the C code source file containing all the code from
all the C components (using the Easy5 Text Editor).

Display Executable Error File... opens the executable error file indicating errors occurring during
compilation (using the Easy5 Text Editor).

Display Build Log... displays the log data created during the create executable process, including errors which
occurred during the compilation process.

Solve Implicit Loops is used to solve implicit model loops.

Force Explicit Typing forces the compiler to check for all undeclared names.

Check for Duplicate Names checks for duplicate input/output names.

Debug Mode is a toggle switch enabling debug mode for generation of executables.

Export Model As... lets you select either a MAT EMX file format, an ADAMS External System Library
format, or a MATLAB/Simulink S-Function.

Stop Create Executable terminates the “create executable” background process. (Linux only).

Analysis Menu
The Analysis menu is used to run analyses, and contains the following items:

199Chapter 1: Reference Manual Topics
Menus
Figure 96 Analysis Menu

Plot Current Results... brings up the Easy5 Plotter and automatically displays plot data results from the most
current analysis.

Open Plotter... brings up the Easy5 Plotter and allows you to plot data from any Easy5 plot file.

Monitor Simulation...(F6) opens the plotter in the monitor mode to display simulation data while the
simulation is running.

Display Output Listing... opens and displays the Analysis Output Listing file that was created during an
analysis (using the Easy5 Text Editor). See “Steady-State Analysis Method” for more information on the Easy5
Text Editor.

Display Analysis Log... opens and displays the analysis log file.

Execute performs the analysis.

Execute/Debug performs the analysis with the debugger turned on.

Stop Current Analysis terminates the execution of the analysis that is currently running.

Open current Analysis... opens the last analysis data form that was used.

Reference Manual
Menus

200
Simulation... opens the Simulation Analysis Data Form which allows you to setup and launch a nonlinear
simulation analysis.

Steady State... opens the Steady State Analysis Data Form which allows you to setup and launch a nonlinear
steady state analysis.

Linear allows you to perform Linear analyses such as the Transfer Function analysis.

Miscellaneous allows you to perform analyses that do not fall under Linear, such as Plot Tables, Function
Scan, and Multiple Analyses.

Open Matrix Algebra Tool spawns the Matrix Algebra Tool (MAT) program.

Run MAT Script opens a Run MAT Script analysis form.

Submodel Menu
The Submodel menu is used to create and manage submodels. It includes the following items:

Figure 97 Submodel Menu

Navigate Up (Ctrl+Up) displays a hierarchical listing of all submodels in your model.

Naviage Down (Ctrl+Down) closes the submodel that you are currently viewing and moves the schematic
up one hierarchical level.

Define... lets you to create a submodel for a group of selected components.

Expand is used to expand the submodel back to its original configuration, thereby eliminating the submodel.

Help Menu
The Help menu gives you access to online documentation. It contains the following items:

201Chapter 1: Reference Manual Topics
Menus
Figure 98 Help Menu

Easy5 Guide containing a guide to all the online documentation. This is the main entry point used to get
help on various Easy5 topics.

Release Notes displays the Release Notes for the installed version.

Library User Guides gives you access to all library user guides.

General Documentation gives you access to general Easy5 documents including Users Guide, Reference
Manual, and Matrix Algebra Tool.

Install Notes displays the Installation Notes for the installed version of Easy5.

Navigation Shortcuts offers information about schematic navigation shortcuts.

Easy5 Web Site... launches a web browser and opens the Easy5 home page.

Install Demo Models... provided a dialog allowing you to install Easy5 demo models to your current
directory path.

Licensed Features... provides information about your license, including a complete list of all licensed Easy5
features, license checkout status, and the ability to manage individual license features.

About... displays information about the installed version, including version number, library variant selected,
and build date.

Reference Manual
Menus

202
Using Shortcut Keys to Open and Select Menus

Shortcut keys provide an additional means of opening menus, by typing in an assigned mnemonic character.
All menu items have a character underlined to indicate the mnemonic key. To activate the menu item, just
type in the underlined letter. However, to open a main menu from the menu bar, you must also enter the
“Metakey” with the menu character. Once the main menu is opened, the Metakey is not needed. The
Metakey is platform-dependent, but is commonly located to the left of the <space bar>. The Metakey is
defined for different platforms as described below:.

Practice using the shortcut keys to activate the Purge menu function previously mentioned in the Model and
Dat “File Menu”.

1. Open the File menu by typing in <Metakey> + f.

2. Select the Model Management sub-menu by typing m.

3. Finally select the Purge function by typing p.

Using Arrow Keys to Select Menu Items

In addition to the mouse and character keys, you can scroll through the menus using the keyboard arrow keys.
A main menu from the menu bar must first be opened to use this feature. Perform the following steps to see
how this feature works.

1. First open the File menu by either selecting it with a CLICK-L, or typing the <Metakey> + f.

2. Enter the right arrow key a few times; notice how the menu selection scrolls to the right.

3. Enter the left arrow key a few times; notice how the menu selection scrolls to the left.

4. Enter the down arrow key; notice how the selection moves down the menu.

5. Enter the up arrow key; notice how the selection moves up the menu.

Note: Standard use of shortcut keys is offered for access to all menu items. If unfamiliar with this,
please read on.

Platform Metakey

HPUX Extend Character

IBM Alt

Sun Alt

Windows Alt

Note: Standard keyboard navigation is offered with all menus. If unfamiliar, read on.

203Chapter 1: Reference Manual Topics
Menus: Shortcut Menu
Closing an Opened Menu
To close an opened menu without selecting a menu item, move the pointer outside the opened menu and
CLICK-L.

Menus: Shortcut Menu
The shortcut menu is a context sensitive menu that displays when you select certain objects with the right
mouse button. These menus gives you quick access to important options available through the main menu.
The following section describes these menus.

Schematic Shortcut Menu
Point the mouse cursor in an open area on the Easy5 schematic pad and press and hold the right mouse
button to open the schematic shortcut menu shown in Figure 99.

Reference Manual
Menus: Shortcut Menu

204
Figure 99 Schematic Menu

This is the only way to access this menu, which gives you menu options that pertain to the schematic.

You can easily copy, paste, or cut components from the schematic, as well as open the Model Explorer window
to view all the inputs and outputs of the model.

An important feature of this menu is to use it to create a text note for component data that you want to place
directly on the schematic.

Component Shortcut Menu
Selecting a component with the pointer, then holding down the right mouse button opens the component
connect shortcut menu.

205Chapter 1: Reference Manual Topics
Menus: Shortcut Menu
The component shortcut menu pops up as shown in Figure 100. This context sensitive menu gives you options
to quickly access important component features, such as editing the title and descriptor, copying and deleting
the component, and opening the icon editor.

Figure 100 Component Menu

For example, selecting Edit Component Title opens a dialog used to edit the component title.

Component Connect Menu
If you right click on a connected component wihtout the component being activated (hightlighted), you get
a component connection menu that lets you quickly customize components connections.

Figure 101 Component Connect Menu

Reference Manual
Menus: Shortcut Menu

206
Connection Line Shortcut Menu
Selecting any connection with the hold right mouse button brings up the connection shortcut menu as shown
in Figure 102.

Figure 102 Connection Menu

The connection shortcut menu is very useful for opening the connection data table to view connection
information, editing connection attributes, turning labels on or off, and following a connection to its
endpoint.

Submodel Shortcut Menu
Selecting any submodel with the hold right mouse button brings up the submodel component shortcut menu
as shown in Figure 103.

207Chapter 1: Reference Manual Topics
Menus: Shortcut Menu
Figure 103 Submodel Menu

This context sensitive menu gives you options to quickly access important submodel features, such as editing
the descriptor, copying and deleting the submodel and editing the icon.

Submodel Stub Shortcut Menu
A submodel “stub” is the semicircle along the submodel window boarder that defines the connection into/out
of the submodel.

Selecting a submodel stub with a hold right mouse button opens the submodel stub shortcut menu shown in
Figure 104. This context sensitive menu gives you options to quickly access important submodel connection
features.

Reference Manual
Menus: Shortcut Menu

208
Figure 104 Submodel Menu

Group Shortcut Menu
The Group shortcut menu applies to grouped components. First, define a group by drawing a selection box
around a group of components. To do this, select the upper left corner of the box with a CLICK-L; hold the
left mouse button and move the mouse down and to the right to expand the box until all the components
you wish to select are enclosed by the box. Then, to open the group shortcut menu, hold the right mouse
button; this brings up the shortcut menu as shown in Figure 105.

209Chapter 1: Reference Manual Topics
Model Explorer Window
Figure 105 Group Menu

This shortcut menu gives you a convenient method to create a submodel, copy/delete a group of component
and move a group of components.

Model Explorer Window
In general, the Model Explorer offers you another way of interacting with your model. When
invoked from the Edit Tools toolbar (or View > Explore Model menu item), it pops up in a
dockable window. As with any dockable window, Easy5 remembers the state of the window, and
restores that state. The default position of the Model Explorer window is docked on the right-hand

side of the schematic.

The Model Explorer window offers various “filters” for examining and navigating within the structure of your
model. The schematic and Model Explorer are maintained in synch with one another. So, when you navigate
in one window, the other will stay in-synch with the other. This allows you to interchangeably navigate using
the schematic, or the Model Explorer, as shown in Figure 106, with the “filter” View selected to visualize the
model by Submodel.

Reference Manual
Model Explorer Window

210
Figure 106 Schematic and Model Explorer Windows

Pick Method
In addition, to its use as a general navigation tool, the Model Explorer window is also used for any “picking”
operation. Such operations are used whenever a model name is needed for some data entry field. This is
commonly used to specify both Temporary Settings files, and many analysis settings forms. In this case, once
you have selected a “pickable” field (with an ellipsis button offered next to the field), the Model Explorer is
utilized by applying a specific filter to your model. Only names that follow the filter will be shown in the
Model Explorer (other names will appear dimmed out).

For example, when specifying output variables for plotting, selecting either the pickable field, or its ellipsis
(“...”) button, automatically opens a Model Explorer window (if needed), with a specific filter applied
resulting in a navigable list of all model output variables available for plotting. If you click on an output
variable from this list, it is inserted into the value column of a simulation form as shown in the example for
Variable #4 (Actuator_pos) in Figure 107.

211Chapter 1: Reference Manual Topics
Model Files
Figure 107 Model Explorer Window

Model Files
A summary of the model files created and saved in your working directory is given in the table below. This
describes each file and also indicates which files can be safely deleted without compromising your model. The
deleted files can always be regenerated.

Reference Manual
Model Files

212
(

Table 1-20 Data Displayed in General and Exponential Formats

File name Description Can delete?

<model name>.v.ezmf This file contains the version of the model
schematic, including the components,
connections, data, Fortran component code, and
connection data tables and data forms. <model
name> is the name of your model, and v is the
version number. A new version of this file is
created whenever you save model data or create
executable.

No

<model name>.info.doc This file documents the <model name>.info.xxx
model file, and can be either a .info.txt, .info.pdf, or
info.htm file

Yes

<model name>.v.ezadb This version-specific file contains the analysis
settings database, matching the model file with the
same version, v.

Yes

<model name>.ezmod This file contains the model defined in Easy5
language and is created each time you create an
executable. This file is overwritten during
successive create executable requests for the same
model.

Yes

<model name>.ezmgl This file contains the model generation listing
written by Easy5 each time you create an
executable. This file is overwritten during
successive create executable requests for the same
model.

Yes

213Chapter 1: Reference Manual Topics
Modeling Fundamentals
Modeling Fundamentals
There are many different methods of modeling a system. This section will present four different methods
commonly used in Easy5 to model systems. The four methods are:

 block diagram method
 component diagram method
 user-defined component method
 state variable method

Example Problem
In the sections that follow, a simple mass spring damper system will be used as an example of how to build
Easy5 models. The mass spring damper system is shown in Figure 108. The free body diagram of this system
is also drawn showing the external forces acting on the mass.

<model name>.ezerr This file contains the error messages describing
problems that occurred when you requested Easy5
to create executable. This file exists only if errors
were found, and it is overwritten during successive
create executable requests for the same model.*

Yes

<model name>.f This file contains the source code of the Fortran
program written by Easy5 each time you create an
executable. This file is overwritten during
successive create executable requests for the same
model.

Yes

<model name>_c.c This is the C source code file generated only if the
model has one or more C components.

Yes

<model name>.exe This file contains the model’s current executable.
This large binary file is built when you request
Easy5 to create executable. This file is overwritten
during successive create executable requests for the
same model.

Yes

Table 1-20 Data Displayed in General and Exponential Formats

File name Description Can delete?

Reference Manual
Modeling Fundamentals

214
Figure 108 Mass Spring Damper System

Summing all forces acting on the body, results in the following differential equation:

 Equation 1

Block Diagram Modeling Method
The mass spring damper model can be built by using many “blocks” to model the equation. This is called the
“block diagram” method because it models the system using primitive blocks. Each block models a simple
equation. In Easy5, the term “component” is used. A block is just a simple “primitive” Easy5 component. A
component that models a simple equation and has simple inputs and outputs. To use blocks to model the
spring mass damper system, just solve for acceleration in the previous equation.

accel=(1/mass)*(Fext - C*velocity -K*position)

Then, integrate acceleration (accel) and velocity to get the resulting position. Simple summation, gain and
integration blocks can be used to model this as shown in Figure 109. Generally, this block diagram method is
not recommended. Six components are needed to model the simple mass spring damper system. In general,
the component modeling method is preferred, as described in the next section.

Mx·· Cx· Kx+ + Fext=

215Chapter 1: Reference Manual Topics
Modeling Fundamentals
Figure 109 Block Diagram Method of Modeling Spring Mass Damper System

Component “Systems Diagram” Modeling Method
The component method of modeling uses Easy5’s unique “systems diagram” approach to modeling systems.
Unlike blocks, Easy5’s components allow you to model entire systems using a single component. These
components may contain many inputs and outputs, and connections between components may be multi-
input/output connections, and bidirectional. Many Easy5 components model complex systems, such as heat
exchangers, hydraulic valves and aircraft dynamics.

To apply the component modeling method, you should first identify prebuilt components that match the
functionality you require. The most general components are contained in the “GP” (general purpose) library.
If the GP library does not contain a matching component, you may find that a different Easy5 library may
have the required component. For example, if you are modeling an air to air heat exchanger, the “ec”
(environmental control) library contains several different models of heat exchangers.

If you cannot find a component that exactly matches your application, you may need to combine several
components or alter them. Complicated engineering blocks must often be broken down into simpler blocks
in order to match them up with the functionality provided by standard components. Figure 110 shows how a
block diagram can be simplified.

Reference Manual
Modeling Fundamentals

216
Figure 110 Simplifying an Engineering Block Diagram

Easy5 does not have a prebuilt component that specifically models a mass spring damper. However, the
system defined by the differential equation of Equation 1 can be transformed to a LaPlace equation and then
to a transfer function as follows:

 Equation 2

Easy5 contains many components that model first order, second order, and nth order transfer functions.
Several components model the transfer function defined by Equation 2.

One of these is the MD (Modal Dynamics) component, as shown in Figure 111.

Differential Equation:

Transfer Function:
1/M

s2+ (C/M)s+ K/M
X(s)
F(s)

=

M
t
2

2

d

d x
C

td
dx

Kx+ + f t()=

Apply LaPlace Transform: Ms2X(s)+CsX(s) +KX(s)= F(s)

X(s)[Ms2+Cs +K] = F(s)

217Chapter 1: Reference Manual Topics
Modeling Fundamentals
Figure 111 Component Method of Modeling Spring Mass Damper System

Notice that the MD component was not created to specifically model a mass spring damper system. However,
the mathematical structure of the MD component matches the transfer function defined by Equation 3. The
component’s input parameters can be used to enter the mass (M), spring coefficient (K) and damper
coefficient (C) as shown. This component has one input and three outputs This example illustrates the
difference between the systems diagram approach of component modeling versus block modeling. One
component is needed using the systems diagram approach compared to the 6 components used in the block
diagram approach.

The MD is a standard component from the GP library. The limitation in using this is that the parameter
inputs and names do not match the mass spring damper parameters. You can easily create your own user-
defined component that specifically models the mass spring damper. This can either be a Fortran, C, or a
Library component, as described in the next section.

User-defined Component Modeling Method
You can create your own component to model a system using either Fortran, C, or Library components.
Using a Fortran or C component, you can code the differential equations, and define input/output names
and values. A library component is similar to a Fortran or C component, but allows you to customize the
component by adding it to a library, creating your own icon and info page, and building in connection
specifications. From the users point of view, a Library component is just like any other standard component
in that it is managed in a library and may be added multiple times to a model.

The details of creating a Library Component is given in the User Guide, Chapter 11 - Library Developer Toolkit This
section will only show the end result of creating a library component.

Figure 112 shows an example of a Library Component. This figure shows the Library Component Editor with
the input/output names and code editor panel with the code used to define the dynamics. With minimal
experience, you should be able to build this user-defined component in a matter of a few minutes. Notice in
the code that, not including the comment lines, only four lines of code are needed to define the dynamics.

Reference Manual
Modeling Fundamentals

218
First, you calculate the summation of all forces (SumF), then calculate acceleration (ACC), then integrate this
once to get velocity (VEL), and integrate again to get position (POS).

Having built the Library Component, you may create your own icon and online documentation (info page).
This component can then be added to any model and can be shared with other users. This modeling feature
is unique to Easy5, and sets Easy5 apart from similar software.

Figure 112 Library Component Editor for Example Mass-Damper-Spring Component

State Variable Modeling Method
The final method is to create a state variable linear model of your system. This method assumes that you are
building a linear model defined by the linear equations:

x• = [A]x + [B]u

y = [C]x + [D]u

219Chapter 1: Reference Manual Topics
Modeling Fundamentals
where

x = state vector

u = input vector

y = output vector

[A] = system (plant) matrix

[B] = input matrix

[C] = output matrix

[D] = feed through matrix

This requires that you build the system [A, B, C, and D] matrices. To do this, you must first break the nth
order differential equations into “n” 1st order differential equations. In this example, the dynamics are defined
by a 2nd order differential equation. Break this into 2 first order equations as follows:

 Equation 3

The final state variable equation is defined by Equation 3. This can be modeled using the SR - State Variable
Model Reduced Format component.

This component is used to model linear models using the state variable format. Just add SR to your model,
and define the [A, B, C] matrices. This component is shown in Figure 113.

Differential Equation: M
t
2

2

d

d x
C

td
dx

Kx+ + f t()=

x1 td
dx

=

x2 x=

x·1
t
2

2

d

d x
=

x·2 td
dx

=

Define x1 and x2:

x·1

x·2

C– M⁄ K– M⁄
1 0

x1

x2

1 M⁄
0

u+=

t
2

2

d

d x Fext
M

----------- C
M

td
dx K

M

 x––=

{

State Equations:

u=Fext
•• •

•• •

Reference Manual
Multiple Analysis

220
Figure 113 Example of the State Variable Modeling Method

There are many ways to build models in Easy5. Four of the most common methods were presented in the
previous sections. The component systems method and the user-defined component method are the
recommended methods for building models in Easy5. In the long run, building your own user-defined
components (Library Components) is by far the best method. This allows you to document the component
with your own icon and info page, and most important, you can manage the component in a library, which
allows you to share your components with others.

Multiple Analysis
Easy5 allows you to perform multiple analyses. This feature allows you to set up a large number of analyses
in one data form and then execute them as one large job. With this feature, you have the option of defining
and executing a series of analyses all at once, rather than defining and executing them individually as you have
done in the previous sections.

The Multiple Analysis feature is very useful in many ways. First, it allows you to utilize your time and the
computer resources more efficiently. For example, you can submit a large multiple analyses job overnight or
over a weekend. The execution will occur during low computer usage time, and the results will be available
to you at your convenience. Multiple Analysis also allows you to define a standard set of analyses that can
subsequently be repeated as a group.

Setting up Multiple Analysis
Multiple analyses are setup and executed via the multiple analysis setup form. A completed example of this
data form is shown in Figure 114.

221Chapter 1: Reference Manual Topics
Multiple Analysis
Figure 114 Multiple Analysis Data Form

This form contains fields used to define the type of analyses to run (property), the name of the analysis file
associated with those analyses, temporary settings file names, if any, and an additional analysis titles.

When the Multiple Analysis Data Form first displays, no analysis is included. As you add inputs, additional
lines are automatically added to the form.

To setup and execute a multiple analysis you need to do the following:

1. Select the analysis type (Simulation, Steady-State, etc.) and execution order for the analyses you wish
to run by selecting the Insert Item button to open the pop up menu (Figure 115).

Reference Manual
Multiple Analysis

222
Figure 115 Multiple Analysis Pop-up

2. For each analysis inserted, enter the name of the analysis settings file that contains the respective
analysis setup instructions.

3. (Optional) For each analysis inserted, enter the name of a temporary settings file if you want to over
ride any parameter, initial condition, or error control values in the model.

4. (Optional) For each analysis inserted, enter an additional analysis title that supplements the title in
the respective analysis data form.

5. Execute the set of analyses.

The following sections provide detailed descriptions on how to complete these steps using the fields in the
multiple analysis setup form. Prior to performing a multiple analyses, you should first have Easy5 calculate
the initial conditions. When you submit a single analysis data form, Easy5 automatically calculates the initial
conditions prior to performing the analysis.

Understanding the Setup Form
The Multiple Analysis Data Form allows you to enter an unlimited number of analyses. Analyses are executed
in the order defined. The push buttons located at the bottom of this form are the same as the other analysis
data forms in addition to the “Insert” and “Delete” buttons. To insert or delete an analysis, first select the

223Chapter 1: Reference Manual Topics
Multiple Analysis
analysis number (the corresponding number in the first column) and then select the insert or delete push
button. Multiple analyses may be deleted at one time by selecting more than one analysis number.

Defining an Analysis Property
The Property column is used to define the type of analyses you want to execute. To enter an analysis type,
point to the open field in this column and select it to display the Easy5 Analysis Types pop-up shown in
Figure 115. Select the analysis you want from this menu and it will be copied into the setup form for you. For
every analysis type you specify, you must also specify a respective analysis file name.

The section that follows describes this process in detail.

In the Multiple Analyses... menu there are four additional options available as follows:

1. Calc. initial conditions - In the case of single analyses (those executed directly from analysis data
forms) Easy5 always sets a variable named ICCALC to 1 and calls your model once. By testing on
ICCALC in your user-code you can define initial condition values and/or perform any initialization
tasks.

If you use this option you can set up the initial condition calculation using the data form as described
in "Initial Condition Calculation".

By default, this analysis is provided as the first analysis of a multiple analysis run.

2. Update I.C./Operating Point - This option loads the current set of state values into the initial
condition vector and allows to you use the new operating point for all analyses that follow. (This
option does not over-write the initial conditions in the model's component data tables, only the
“Restore operating point” option in the Options menu can do this.)

This option is often used after a Steady-State analysis or a simulation to load a steady-state operating
point into the initial condition vector. Initial conditions defined in this manner remain in effect until
another “Update initial condition” command is issued or the multiple analysis session ends.

3. Mult. error by - This option is a convenient way to multiply all the error control values for all of the
states in your model by a constant value. See the subtopic under Integration “Guidelines for Setting Error
Controls” for more information about error controls. For example, if the error control values in your
model are too large you could use this option to multiply them by.1.

Note: Prior to performing multiple analyses, you should first have Easy5 calculate the initial
conditions. When you submit a single analysis data form, Easy5 automatically calculates the
initial conditions prior to performing the analysis. However, an initial conditions calculation
is not implicitly performed when submitting analyses via the multiple analysis data form.
Instead, by default the first analysis for a multiple analysis run is explicitly provided as Calc.
initial conditions.

Reference Manual
Multiple Analysis

224
When this option is selected, you will be prompted to enter a multiplier. After you enter a number
and press RETURN, Easy5 will copy the line “Mult. error by xx” in the setup form, where xx is the
value you entered.

This option does not change any of the error control values in any of the model's data tables.
Therefore, changes made to the error control values remain in effect only during the multiple analysis
session or until they are changed by another “Multiply error by...” request.

4. Undo temp settings - This option allows you to change all parameter, initial condition and error
control values back to the values in the model's component data tables. This option is used when you
have been using temporary settings files and want to return to default values.

Specifying an Analysis Settings File
For every analysis listed in the “Type” column you must also specify an analysis file describing the analysis to
be performed. Analysis files are defined in the column labeled “Analysis File.” Analysis files contain analysis
information and are created when you perform a save operation in any of the analysis data forms.

After selecting the type of analysis for the “Type” column, Easy5 displays a list of analysis files that currently
exist for the analysis type specified. Select the analysis file you want from this menu with your left mouse
button and it is copied into the data form. You can also create a new analysis file by selecting the “New” push
button located at the bottom of the menu. A dialog box prompts you to enter a new Auxiliary Input File
name. Selecting “OK” transfers the name into the data form.

Once you have entered an analysis file you can open up the respective data form by selecting the analysis name
with the center mouse button. When the data form opens you can change the analysis definition just as if it
were a “single execution” analysis. This feature allows you to enter a new analysis file name and set up an
analysis from scratch directly from the multiple analysis data form.

Defining a Temporary Settings File
For every analysis specified, you have the option of defining a set of temporary parameter and initial
condition values that will over ride the default values (those contained in the model's component data tables)
during the analysis. Temporary settings are defined in the respective analysis data form as described in the
"Temporary Settings File".

When setting up a multiple analysis you can define another set of over riding temporary values for any of the
analyses listed. Additional sets of temporary values are defined in the multiple analysis data form in the
column labeled “Temp Settings File.” If a temporary settings file is already being used, and you specify
another temporary settings file, both sets of values will be applied to the model, with the original set applied
first, and the multiple analysis set applied second.

To specify a temporary settings file, highlight the field and select it to display a list of temporary settings files
that already exist for the respective analysis file. From this list select a file name or use the “New” option to
define a new file.

Caution: Temporary Settings Files are additive! Once a Temporary Settings File has been applied, the
change remains in effect throughout subsequent analyses in a Multiple Analysis. To remove
the effect of all accumulated Temporary Settings File, use the Undo temp settings feature.

225Chapter 1: Reference Manual Topics
Open Model Dialog
Once a temporary settings file name has been entered, you can open up the respective file by highlighting the
name and selecting it with you center mouse button. See "Temporary Settings File" for more information about
placing values in temporary settings files.

Specifying Multiple Analysis Titles
You can specify a title for every analysis listed in the multiple analysis setup form. This title will be combined
with the title in the respective analysis data form to label analysis output. Specifically, the combined title is a
combination of the multiple analysis title followed by a dash.

Open Model Dialog
After Easy5 starts, the Open Model dialog displays.

This dialog allows you to change directories, define a new model and open an existing model. A default model
name is always pre-assigned, so if you don’t care what it should be named, simply select the [OK] button. This
dialog utilizes a native File dialog, with an example for Windows shown below in Figure 116.

Figure 116 Open Model Filter Dialog

Bypassing the Open Model Dialog
If you are resuming work on a previously built model from a command shell, you start Easy5 with a particular
model by entering the following command at the prompt:

easy5x <model_name>

Reference Manual
Open Model Dialog

226
where: model_name is the name of a previously built model, file, or path. If you enter only the model name,
the highest version will be opened; you may include the v.ezmf extension to open a specific version of the
model. Of course, this means you must start Easy5 from a command shell. If you include a full path, Easy5
will open the specified model in that path.

When a model_name argument is provided Easy5 will start up and bypass the Open Model dialog shown in
Figure 116, and load the model specified.

Starting a New Model
To start a new model, select File > New and enter a model name in the appropriate field. A new, empty model
will be created and named accordingly.

The model name must conform to the following conventions:

 Model name must use alphanumeric characters, with 32 characters or less.
 do not use embedded blanks, instead, use an underscore (__).
 do not use periods "." in the name.

Opening an Existing Model
If you wish to open an existing model, select File > Open, navigate to the appropriate folder, and select the
existing model name from list provided. Either select it with a double-left-click which automatically opens
the model, or with a single mouse left-click and then select the [OK] button.

Opening a Damaged Model
If an Easy5 model is damaged, you may encounter a problem loading it. When this occurs, Easy5 will display
a warning message informing you of the fact that the model is damaged. After you acknowledge the warning,
Easy5 will attempt to correct the problem by rereading the model in a so-called "corrective-read" mode. If
this fails, please contact Easy5 Support, and provide an attached copy of the damaged model file.

Checking Background Processes
After an initial model has been opened following the launch of the Easy5 graphical user interface, a check is
made on any background processes identified with your username that are currently running. Normally, you
would not expect that Easy5 background processes are already running during initialization.

However, if background processes are running, it could mean one of three things:

1. You previously launched some Easy5 analyses and exited the graphical user interface before they
completed (which is OK).

Note: Windows: You can open any Easy5 model via an Explorer Shell by double-clicking on the
appropriate Easy5 model file.

227Chapter 1: Reference Manual Topics
Open Model Dialog
2. You are running other Easy5 jobs on this computer, which is OK as long as you are running them in
a different directory.

3. Jobs launched from Easy5 are no longer working -- they may have halted for some reason -- and
related processes are still running, although it is doubtful that they are doing anything. These are
called “stale” processes.

This background processes check is done primarily to alert you of the latter case: potential stale background
processes that may be running. Such processes can potentially interfere with Easy5’s ability to run analyses,
so Easy5 notifies you with the following dialog as shown in Figure 117:

Figure 117 Background Process Detection Dialog

If you select Yes, a Background Process dialog is displayed, allowing you to view and terminate (stale)
background processes.

Reference Manual
Operating Point

228
Figure 118 Background Processes Check

Please see “Background Processes” for further details on Easy5 background processes, and using the Background
Process list dialog.

Operating Point
The starting point, or operating point, for all Easy5 analyses is defined by the set of initial conditions you
define. Initial condition values for the respective states are defined in the component data tables containing
these states. Initial conditions for a simulation define the point from which Easy5's integration algorithms
begin. For linear analyses, the initial conditions define the point about which linearization occurs. When you
use one of the Easy5 linear analyses to evaluate model stability, it is usually assumed that the operating point
is at equilibrium. An equilibrium point (also referred to as steady-state) is a point where the first derivatives
of all states are zero.

Creating an Operating Point
In general, specifying an equilibrium point for your model is a primary task of model characterization, and
this can be accomplished using any of the methods described below.

 Load initial conditions manually
 Calculate initial conditions in a Fortran component
 Have equilibrium initial conditions automatically calculated and loaded for you by Easy5 (i.e., use

the Steady-State analysis)
 Copy the final state vector from a simulation into the initial condition vector for use in the next

analysis

Manually Load Operating Point Data
You can load initial conditions manually by “examining” (opening) the appropriate component data tables
(i.e., those associated with components that calculate state variables), and entering initial condition values in
the “(IC) Value” column. Only nonzero values require loading, since all initial conditions are initialized to
zero.

Define the Operating Point in a User Code Component
You can calculate values for one or more initial conditions with a User Code component. Before Easy5
executes any of its analyses, it sets a common variable, an Easy5 “reserved word,” named ICCALC to one,
and calls your model once. By testing on the value of this variable, you can execute an appropriate section of
code and set values for any states you wish. After the model is called, the state vector is simply copied into

Note: For operating points saved by the main application, the values of model variables are also
included in an operating point. This allows such values to be displayed in the schematic, and
permits a consistent restart point. Such operating points are only valid for a given set of
inputs and initial conditions.

229Chapter 1: Reference Manual Topics
Operating Point
the initial condition vector; no integration occurs. See “Reserved Words” for information on the ICCALC
variable.

Define the Equilibrium (Steady-State) Operating Point
You can have Easy5 calculate the equilibrium (steady-state) operating point for you by running a Steady-State
analysis. To do this, in the Steady State Analysis Data Form, save the operating point by setting the “Save
Final Operating Point” button to “Yes”. This will open a data field that prompts you for a file name. Enter a
file name used to save the operating point. The Steady-State analysis is discussed in “Steady-State Analysiss”.

Define an Operating Point from a Simulation
Easy5 can save the operating point at the end of a simulation analysis to a specified file. This is done by setting
the “Save Final Operating Point” button to “Yes” in the Simulation Analysis Data Form, which opens a data
field prompting you enter a file name.

Operating Point Files
Operating Point files can be created and then used either to update the model values, or as a starting point
for any analysis.

Creating an operating point file from the state initial condition values defined in the components:

1. Select the Options > Save Operating Point menu. This will open a dialog requesting an operating
point file name.

2. Enter a name.

This feature will copy all of the state initial condition values currently defined in the model’s components,
into a operating point file. This kind of operating point also saves values for all model variables. You may
create as many operating point files you wish.

Generating an operating point file from a Steady State analysis or Simulation Analysis:

1. From the analysis form, set the “Save Final Operating Point” setting to “Yes”.

2. Enter a file name used to save the operating point in the appropriate field.

This kind of operating point does not contain values for model variables.

Note: Normally, an Easy5 operating point is defined purely by the value of all initial conditions for
states in your model. For sampled-data systems, this can be slightly different, if the time at
which the operating point is saved is a non-fundamental sampling rate interval of simulated
time. In such a case, Easy5 additionally saves the values of the rates of all active digital states
in the operating point file. This is done to allow you seamless stop and restart for sampled-
data simulations using the familiar paradigm of an Easy5 operating point as a valid starting
point.

Reference Manual
Parameters - Defining Input Values

230
Loading operating point data directly back into the model, or using it as a starting point for an analysis:

1. Select the Options > Restore Operating Point... menu to select an operating point file and load the
data from that operating point file.

2. Select a file to load the operating point data directly into your model and update all state initial
condition data.

To use the operating point from an operating point file as a starting point for any analysis:

1. Select the “Initial Operating Point” data field. Every analysis has this data field at the top of the
analysis data form. A pull-down list offers all operating point files associated with your model.

If you select a file, the operating point data will be loaded in only for the single analysis and used an the initial
condition vector; this does not modify the model, it only updates the state data used as a starting point for
the analysis.

2. If TIME is tagged with the operating point, you will be prompted to decide whether to update and
use this time. If your model has time dependent functions then this is important; you may need to
use the time tagged with the operating point data. Otherwise, you may select “No”.

For example, if you generated the operating point file by performing a simulation to 20 seconds and saving
the final operating point, when you attempt to restore this operating point in a subsequent analysis, it will
tell you the “Time=20” is defined with the operating point. If you have tabular functions of time or
sine/cosine functions of time, select “Yes” to restore TIME with the operating point.

Editing the Operating Point File
When you save an operating point to a file, the file is saved to your directory and named:

<model_name>.<op_ID>.ezic

This is a simple text file that you can view and edit. Use the Easy5 Text Editor to look at the data by selecting
File > Open Text Editor... . Please see “Steady-State Analysis Method” for more information on the Easy5 Text
Editor.

Parameters - Defining Input Values
See Also: "Component Data Table"

Parameters are defined in the CDT's Inputs category. Each unconnected input must be given a constant
value, or it will be assigned a default value of .99999 by Easy5. Parameters are scalar, vector, or array
quantities, depending upon whether or not the respective component has been vectorized.

To specify scalar parameter values, open the Component Data Table. In the Values/Type column, next to the
corresponding component input name, point to the ".99999" value. When the value you selected is
highlighted, type in the appropriate scalar value and then press Enter.

Pressing Enter moves the highlight to the next data field in the Values column Figure 119.

231Chapter 1: Reference Manual Topics
Parameters - Defining Input Values
Figure 119 CDT Inputs

You can continue to enter scalar parameter values, or you can close the component data table and save the
new parameters by selecting OK.

If a component makes use of a vector parameter that has three or fewer elements, individual entries for every
element of the vector appear directly in the component data table, and values are specified for them exactly
as they are for scalar quantities. When vectors have four or more elements, or when arrays (matrices) are being
used, you must assign parameter values by filling in the respective data table.

Matrix Editor Window
The Matrix Editor window is shown in Figure 120, displaying a 5x4 matrix. The format is similar to other
spreadsheet programs. This is similar to the Table Editor in functionality, but the display differs in that it does
not display the additional data fields for the independent variables.

Note: All component input values in Easy5 are typed as double-precision real numbers. Even if you
enter an integer value, Easy5 converts it to a real number.

Reference Manual
Plot Tables Analysis

232
Figure 120 Matrix Editor Window

A complete description of how to use the Matrix Editor is provided in the User Guide, Chapter 8 - Table and Matrix
Editor. This chapter describes the Matrix Editor features and functionality.

Select he OK push button located at the bottom of the table to save any changes you have made and return
to the component data table. Selecting the Cancel button will return you to the component data table
without saving any of your changes.

Plot Tables Analysis
The Plot Tables analysis generates plots of table data used in your model. This analysis is normally used
during the initial stages of model development to verify that all tabular data in your model are free of gross
errors, since it is often very difficult to detect typing mistakes just by looking at rows and columns of
numbers.

Setting up a Plot Tables Analysis
The Plot Tables analysis is set up using the Plot Tables Data form. Select Miscellaneous > Analysis > Plot
Tables from the main menu to view the form shown in Figure 121.

233Chapter 1: Reference Manual Topics
Power Spectral Density Analysis
Figure 121 Plot Tables Data Form

Setting up this analysis involves entering the names of the tables you want plotted or using the Model
Explorer “Pick” method. Either use the Show Tables button, or select a component from the on-screen
schematic to display a list of table names for that component. Select a name in this list and it is copied into
the data form for you.

To delete a table name, select the name with your left mouse button and select the “Delete” push button at
the bottom of the data form.

You can generate plots of all table data in your model by selecting “All” from the “Plot Tables:" option. If you
do this, all the data fields in this form disappear and Easy5 creates plots of all table data in your model when
the analysis is executed.

Power Spectral Density Analysis
The Power Spectral Density analysis is used to examine the energy content of an input and output signal of
your linearized system model. This is a useful tool in designing a control system because it gives you an
indication of the system frequencies at which the signal energy is concentrated. These results are helpful in
determining the effect that combinations of random signals and noise disturbances have on your control-
system design.

See also: "Analysis Data Form"

"Power Spectral Density Analysis Method"

The Easy5 Power Spectral Density analysis uses an input power spectral density and a specified transfer
function to calculate an output power spectral density. The transfer function is calculated from a model that
is linearized about the defined operating point. You have several options for the input power spectral density,

Reference Manual
Power Spectral Density Analysis

234
including two where you supply the form or the equations. Power Spectral Density Analysis can be performed
with both continuous and sampled-data models.

The Power Spectral Density Analysis Data Form
All the specifications for performing a power spectral density analysis are given with the power spectral
density data analysis form via your mouse and keyboard. To open this analysis data form, select , Analysis >
Linear > Power Spectral Density... from the main menu. Figure 122 is an example of the power spectral
density analysis data form with all analysis options selected.

Specifying the Power Spectral Density Input
“PSD Input” can be the name of any state, variable, or parameter in the model. It represents the injection
point for the input power spectral density, and it is the input part of the transfer function specification. To
enter an input name, point to the respective data field, and enter the name. You can also use the “Pick” option
to enter the PSD input name, described in “Model Explorer Window”.

Specifying the Power Spectral Density Output
“PSD Output” can be the name of any state or variable in your model. This quantity represents the
measurement point for the output power spectral density, and it is the output part of the transfer function
specification. To enter an output name, point to the respective data field, and enter the name. You can also
use the “Pick” option to enter the PSD output name, as described in "Model Explorer Window".

Caution: If “PSD Input” is set to a state name, that state must be frozen. Otherwise, signal paths around
the state will remain active, and will become part of the calculated transfer function. This
will yield incorrect results. In general, better numerical accuracy will be obtained if all model
states not included in the specified power spectral density are frozen. Otherwise, zeros will
be calculated for the transfer function to cancel the poles corresponding to extraneous states.

235Chapter 1: Reference Manual Topics
Power Spectral Density Analysis
Figure 122 Power Spectral Density Data Form

Selecting the Input Noise Distribution
The default setting for the input noise distribution is white noise with a 1-sigma amplitude of unity. To
specify a different 1-sigma amplitude or a different noise distribution, select “Show/Edit Input Noise
Distribution Parameters.” A PSD “Input Noise Distribution Parameters Form” will appear on your screen.
For a detailed explanation of this form see "The PSD Input Noise Distribution Parameters Form".

Setting the Frequency Units Option
“Frequency Units:” is used to specify the frequency units associated with the input power spectral density.
This is especially important when any of the user-supplied input noise distributions has been chosen. To
select a value, point to the desired setting and click the left mouse button.

Reference Manual
Power Spectral Density Analysis

236
Setting the Plot Data Option
“Plot Data:” tells Easy5 whether or not you wish to plot the results from the Power Spectral Density analysis.
Point to the desired setting and click the left mouse button.

Setting the Plot Type and Plot Signal Options
“Plot Type:” and “Plot Signal:” tell the Easy5 plotter which power spectral density results you wish to see
displayed first. “Plot Signal:” selects either input quantities or output quantities or both input quantities and
output quantities for display. “Plot Type:” is used to tell whether the power spectral density or the
accumulated RMS or both the power spectral density and the accumulated RMS will be displayed. Point to
the desired settings and click the left mouse button. The default settings have the input and output power
spectral density displayed on the same plot.

Setting the Plot Scales Option
“Plot Scales:” is used to specify manual scales or automatic scales to the plotter. Point to the desired setting
and click the left mouse button. When automatic is selected Easy5 automatically finds the maximum and
minimum of all quantities to be plotted. For the frequency axis, the minimum frequency is 1/10 of the lowest
non-zero frequency in the model, and the maximum frequency is 10 times the highest frequency in the
model.

Selecting manual scales expands the Power Spectral Density Analysis Data Form to include maximum and
minimum settings for all variables that can be plotted. Specify the scales by entering the appropriate values
in the data fields. If the maximum and minimum values in a given data field are the same, Easy5 uses
automatic scaling for that variable. This is a way to turn off a previously set manual scale.

The PSD Input Noise Distribution Parameters Form
Right-click to select the desired distribution and click the left mouse button. All distributions have an
“Intensity” data field, which corresponds to the 1-sigma amplitude of the distribution; the default value is
1.00. Depending on the distribution selected, additional options and data fields will appear on the form.
These additional options and fields are defined in the following sections.

Defining the Air Speed Parameter
The “Air Speed Parameter” is the name of the quantity in your model that corresponds to true airspeed. You
enter the name of this quantity in the data field following “Air Speed Parameter:” on the data form. To enter
a parameter name, point to the data field and enter a name. You can also use the “Pick” option to enter the
airspeed parameter name.

Specifying the Scale Length Parameter
“Scale Length:” is used to specify the spatial frequency of the selected noise distribution. Information about
its use is discussed in “Power Spectral Density Analysis Method”. To enter a value, point to the “Scale Length:” data
field and enter a number.

237Chapter 1: Reference Manual Topics
Power Spectral Density Analysis
Selecting the Axis
For a description of how the noise distributions differ between axes, see "Power Spectral Density Analysis Method".
To select an axis, point to the desired axis, u, v, or w, and click the left mouse button.

Specifying the Peak Amplitude Parameter
“Gust Amplitude:” is used in the discrete (1 - cos) noise distribution to specify the peak amplitude of the (1
- cos) function which occurs at the “Gust length” value specified in The PSD Input Noise Distribution
Parameters Form. For an indication of its use, see the noise distribution equations in "Power Spectral Density
Analysis Method". To enter a value, point to the “Gust Amplitude:” data field and enter a number.

Specifying the Gust Length Parameter
“Gust Length:” Is used in the discrete (1 - cos) noise distribution to specify the spatial distance to the gust of
the (1 - cos) function. For an indication of its use, see the noise distribution equations in "Power Spectral Density
Analysis Method". To enter a value, point to the “Gust Length” data field and enter a number.

Using The User Subroutine Option
If you select “User Subroutine” you must provide a subroutine that calculates the input power spectral density
from a given frequency input.

The calling sequence for this subroutine is:

SUBROUTINE EZPSDU (FRQRPS, FRQHZ, PSDVAL)

where:

FRQRPS = evaluation frequency in radians/second (input)

FRQHZ = evaluation of frequency in Hertz (input)

PSDVAL = value of Power Spectral Density at evaluation frequency (output)

The evaluation frequency is provided to routine EZPSDU in both units of radians/second and hertz for
convenience; use the one which is most suited for your calculation.

Using the User Table Option
If you select “User Table”, you must add a table named PSDINP in a Fortran component. If there are no
Fortran components in the model, you must add one which specifies PSDINP. This component does not need
to have any other inputs or outputs, but it must have at least one line of code in it, for example, a Fortran
comment line.You specify data for the table in the normal manner using frequency as the independent
variable.

Note: You must specify FRQRPS, FRQHZ, and PSDVAL as REAL*8 variables (double precision
values).

Reference Manual
Power Spectral Density Analysis Method

238
Power Spectral Density Analysis Outputs
Power Spectral Density analysis outputs can be in plotted and/or printed format. These output formats are
described in the following sections.

Power Spectral Density Plots
If power spectral density plots were generated during your analysis, you can look at them by selecting Plot
Analysis Results (Ctrl+P) from the Analysis menu.

The Power Spectral Density Analysis Output Listing
The Power Spectral Density analysis output listing may be examined by selecting Display Analysis Output
Listing (Ctrl+L) from the Analysis menu. Once this file has been opened, search for the string “POWER
SPECTRAL DENSITY ANALYSIS” to point you to the start of the Power Spectral Density analysis output
printout.

You will see the linearization data and the operating point information for the transfer function associated
with the selected input power spectral density. This is followed by the zeros, the leading coefficient, and the
poles of the transfer function. Next is a listing of the input and output power spectral densities and their
associated accumulated RMS values, as a function of frequency - both Hertz and radians/second. The
selection specified by the “FREQUENCY UNITS” option will be printed in the first column.

Power Spectral Density Analysis Method
Power Spectral Density analysis is based on passing an input power spectral density through a transfer
function to yield the output power spectral density. The related equation is:

where:

The accumulated RMS for either the input or the output power spectral density is also printed. The actual
mean square value of the given PSD is:

ω is the frequency in radians/second

Pin is the input power spectral density

H(jw) is the transfer function

Pout is the output power spectral density

Pout ω() H jω() 2
Pin ω()=

V
2 1

2π
------ P ω() ωd

0

∞

=

239Chapter 1: Reference Manual Topics
Power Spectral Density Analysis Method
The accumulated RMS curve is the square root of this quantity; the upper limit is the maximum frequency
and not infinity. As long as the integration range is “infinite”, the final value of the accumulated RMS will
be close to the actual RMS value of either the input or the output.

For more information on Power Spectral Density analysis, see Reference 20, at the end of this manual.

Input Noise Distributions
The gust distributions are either Von Karman, Dryden, or Discrete. The von Karman distribution is defined
by:

Φ Ω() Lσ2

π
---------- 1 8 3⁄() 1.339LΩ()2

+

1 1.339LΩ()2
+[]

11 6⁄
--= v,w-axis

Φ Ω() 2Lσ2

π
------------- 1

1 1.339LΩ()2
+[]

5 6⁄
---= u-axis

Reference Manual
Power Spectral Density Analysis Method

240
The Dryden distribution is defined by:

where:

The spatial power spectral densities are related to temporal power spectral densities through the airspeed. The
conversion equation is:

where:

The 1-sigma amplitudes of these distributions are related to the accumulated RMS calculation as follows. The
1-sigma amplitudes are defined as:

The equation that relates the final value of the accumulated RMS to the 1-sigma amplitude is:

L is the gust scale length - units, length

σ is 1-sigma amplitude - units, length/time

Ω is the spatial frequency - rad/length

V is the true airspeed - units, length/time

φ is the spatial power spectral density

Ω is the spatial frequency - rad/length

Φ is the temporal power spectral density

ω is the temporal frequency - rad/second

Φ Ω() 2Lσ2

π
------------- 1

1 LΩ()2
+

--------------------------= u-axis

Φ Ω() Lσ2

π
---------- 1 3 LΩ()2

+

1 LΩ()2
+[]

2
---------------------------------= v,w-axis

Φ ω() 1
V
---φ Ω ω V⁄=()=

σ2 Φ ω() ωd

0

∞

=

V
σ

2π()0.5
------------------=

241Chapter 1: Reference Manual Topics
Print Options
The Discrete (1 - cos) distribution is defined by:

where:

This gust is deterministic, but its parameters can be related to the statistical form of the preceding
distributions.

Print Options
See also: "Documenting and Printing the Model"

Windows Print Options
Print options on the Windows version of Easy5 are managed using the standard Windows print features.
When a print is requested, the Print dialog opens. This dialog is self-explanatory. Selecting the [Properties]
button opens a dialog that allows you to setup additional print options. The print settings last applied are
saved and used for subsequent print jobs.

Linux Print Options
Print options for Linux platforms are managed using a native Linux Print dialog. When a print is requested,
a standard Print dialog opens. Again, print options are generally self-explanatory, and offer the ability to print
the schematic page in a variety of layouts, different printers, and to printed to a file (using Postscript).

Note: Easy5 uses trapezoidal integration to calculate the accumulated RMS values. If the range of
integration is not wide enough, then the integral will be in error. The range of integration
must span the transfer function frequency range (Easy5 will ensure this) and the power-
spectral-density frequency range. Therefore, you may wish to use manual scales during this
analysis.

d is the distance to gust peak, units - length

V is the true airspeed, units - length/time

A is gust amplitude, units - length/time

Φ ω() πV
d

 4 A

2

 2

2 1 2ωd
V

----------cos–

ω2 ω2 πV
d

 2

–
 2

--=

Reference Manual
Reserved Words

242
Reserved Words
Easy5 contains a set of reserved words that you must never use in your User Code or Library components as
inputs and/or outputs. In addition, these Fortran variable names should never be set in your code.
(Exceptions to this are ISTOP and PFLAG, which can be set as described below).

 Easy5 Reserved Words

* Any input/output name beginning with these letters are reserved words.

C

CCLOCK

CIO

CKLOCK

CP

CPOITR

CPUSEC

CSIMUL

CSIMUR

CV

CX

CXDOT

D

DPR

EQMO

ERMESS

EZ____*

FO____*

GRE

GRM

IAUX

ICCALC

ICLOCK

IDELAY

IDIAG

IDUMMY

IERR

IEZ___*

IFINAL

IMOD

INCALL

INDP

INST

INDP

INX

IOC1

IOC2

IOC3

IOC4

IPRINT

IREAD

ISTOP

ITINC

IWARN

IWRITE

IXOC

KCLOCK

KMOD

LOKSIM

LOKSS

MJITER

MNITER

NRC

NRCMAX

NS

NU

ONE

PFLAG

PI

R

RENAME

RPD

SDOT

STOP

TABLE

TAU___*

TAU0

TIME

TINC

TMAX

TSTEP

UPRINT

VARSET

VS

XDOT

Z

ZERO

243Chapter 1: Reference Manual Topics
Reserved Words
General Reserved Words
Several of these variables can be used in your User Code and Library components to monitor an analysis. In
addition, two of the words, PFLAG and ISTOP, can actually be set to control the Simulation analysis. Several
Easy5 reserved words that you are likely to find useful are described in the following tables:

Caution: If you declare any of these reserved words as inputs or outputs to User Code or Library
components, Easy5 detects them and issues a fatal error message to that effect. However,
Easy5 cannot detect if you simply set (use it to the left of an equal sign) one of the reserved
words, so exercise care when writing your code.

Reserved
Word Description

CPUSEC A variable set to the number of computer CPU seconds that have elapsed.

ICCALC Flag used to calculate the initial conditions. ICCALC=1 only once during the calculation of
initial conditions; ICCALC=0 at all other times.

INCALL A flag that indicates the initial call to EQMO for each analysis. The value of INCALL is set
by the Analysis program as follows:

INCALL = 2 for the first call to EQMO during the first analysis of a run, that is, the first
analysis defined in the Analysis Description file.

INCALL = 1 for the first call to EQMO during the second and all subsequent analyses.

INCALL = 0 for the second and all subsequent calls to EQMO during all analyses.

INCALL can be used to cause initialization calculations to be performed only on the first
call to the system model for each analysis. By testing on INCALL=2, default parameters can
be set only at the beginning of an analysis run. The following code shows how this feature
is used in a Fortran component:

IF (INCALL.NE.2) GO TO 20
.....

C (DEFAULT CALCULATIONS AT BEGINNING OF RUN)
.....

20 IF (INCALL.EQ.0) GO TO 100
.....

C (INITIAL CALCULATIONS BEFORE EACH ANALYSIS)
100 CONTINUE

IDELAY A flag used in discrete models. IDELAY is set to 1 during model calls at sample periods. For
all other calls to the model, IDELAY is set to 0.

Reference Manual
Reserved Words

244
IERR A flag used primarily for steady-state analysis validity checking. IERR is set to 1 after a
steady-state solution has been found, but prior to the “official” model call. In this way, you
can perform validity checks to see if the solution point is a reasonable one. For example, the
following code is used to check if system pressure makes sense at the equilibrium point:

 IF (INST.EQ.31 .AND. IERR.EQ.1 .AND. PRESSUR.LT.ZERO)

 + WRITE (IWRITE,'(//5X,''INVALID-PRESSURE NEGATIVE''//)')

This flag is also used by the Runge-Kutta variable-step integration method to indicate calls
to the model where the error controls are satisfied.

INST An analysis indicator whose value depends on the type of analysis being executed. All the
values for INST are listed below: .

INDP Simulation termination mode flag; see “Termination Commands”.

ISTOP A special reserved word that you can set to 1 or 2 to stop a simulation before the "STOP
TIME" value has been reached. See “Stop and Exit Flags” for details.

ITINC A flag used during a simulation. ITINC is set to 1 at every "TIME INCREMENT", and set
to 0 at all other times. ITINC is typically used to ensure that data is output by one of your
components at a valid reporting interval.

Reserved
Word Description

Analysis Type INST Flag Value

CALC XIC 61

LINEAR MODEL GENERATION
(no INPUTS/OUTPUTS)

27

LINEAR MODEL GENERATION
(with INPUTS/OUTPUTS)

63

PRINT 60

ROOT LOCUS 32

FUNCTION SCAN (one indep. var.) 13

FUNCTION SCAN (two indep. var.) 14

SIMULATION 26

STABILITY MARGINS 29

STEADY- STATE 31

TRANSFER FUNCTION 30

EIGENVALUE SENSITIVITY 28

POWER SPECTRAL DENSITY 106

245Chapter 1: Reference Manual Topics
Reserved Words
IEZSWS A flag used to signal whenever a switch state event search is taking place (=1) or (=0
otherwise).

IWRITE A COMMON variable that is set equal to the Fortran unit number which corresponds to
the Analysis Output Listing file. You can “write” to this unit number in your Fortran
components and the output will be sent to this listing file. Theoretically, you could change
the value of IWRITE during a simulation, and all output would be redirected to another
file, assuming it has been properly opened.

LINEAR A logical flag that indicates whether an analysis is nonlinear or linear. In some circumstances,
you may wish to provide alternate code depending on the value of this flag. The table for
the reserved word INST gives the values of LINEAR for all analysis types. For example,
consider a component modeling a deadzone. For linearized analyses it would be convenient
to ignore this nonlinearity. This could be done with the following code:

C - - - IN NULLZONE
 IF (.NOT. LINEAR) THEN
 OUTPUT = 0.0
 ELSE
 OUTPUT = GAIN * INPUT
 ENDIF

Several General Purpose components utilize this flag to ignore certain non-linearities for
linearized analyses.

PFLAG A reserved word that can be set by your code to control printing and plotting during a
simulation. If you set PFLAG to 1, any secondary print and plot options you have specified
will become active. If PFLAG is set to 0, printing and plotting will return to the primary
mode. This variable is also set by Easy5 according to the information you have specified with
the "FROM TIME" and "TO TIME" data fields.

TAUMAX A variable that is set equal to the least common multiple of all sample periods.

TAU0 A variable equal to the smallest or lowest common divisor of sample periods.

TIME TIME is always set to the current time of the analysis. In the case of a Simulation analysis,
TIME changes as the simulation progresses. For all the other analyses, TIME is equal to the
"TIME" value you enter in the respective data form.

TINC For a Simulation analysis, this variable is set equal to the "TIME INCREMENT" value in
the simulation data form. For all other analyses, TINC is equal to 0.1.

TMAX For a Simulation analysis, this variable is set equal to the "STOP TIME" value in the
simulation data form. For all other analyses, TMAX is given a default value of 1.0.

TSTEP TSTEP is set equal to the current integrator step size. For the fixed-step integrator, TSTEP
is always equal to TINC. For variable-step integrators, TSTEP changes depending upon the
integrator's step-size selection algorithm.

Reserved
Word Description

Reference Manual
Root Locus Analysis

246
Physical and Mathematical Constants Reserved Words
The following Easy5 reserved words are available to use in your model as constants. They represent floating
point numbers or values for physical and mathematical constants used frequently by Easy5 users. They have
up to 14-point accuracy.

Root Locus Analysis
The Root Locus analysis calculates the loci of the system eigenvalues as a function of a specified parameter.
The Easy5 program allows a Root Locus analysis to be performed at any operating point value, as well as a

Reserved
Word Description

ONE The value of one. Also, this is often used to multiply another floating-point number
located in an argument list. This helps to minimize “conversions” that may be necessary
when transporting code between different machines. For example, the following code on
a 64-bit machine would work well (because X is typed REAL):

X = MAX(X,11.57)

However, this code would not be the same if run on a 32-bit machine. In this case, you
would have to add D0 to the number because the variable X is typed REAL*8, not REAL.
To avoid this, simply multiply the value 11.57 by ONE and the resident FORTRAN
compiler will convert it to the correct type automatically. The machine-independent form
of this code would be:

X = MAX(X,11.57*ONE)

Thus, the suggested form for using floating-point literals in an argument list is as follows:

literal*ONE

where literal is a literal floating-point number.

ZERO A constant in COMMON set equal to a double precision real value of 0.0.

PI A constant in COMMON set equal to a double precision real value for Pi
(=3.14159265358979).

RPD Conversion constant: radians/degree (0.017453293 radians/degrees).

DPR Conversion constant: degrees/radian (57.29577951 degrees/radian).

GRM Gravity constant: SI units (9.80621 m/sec2).

GRE Gravity constant: English units (32.1725 ft/sec2).

EZXLG A very large number: 1.0E+36.

EZXSM A very small number: 1.0E-14.

FPZ Floating point precision of your machine. This is usually set to a value of 1.0E-14.

247Chapter 1: Reference Manual Topics
Root Locus Analysis
function of any system parameter. This analysis can be performed on both continuous and sampled data
systems and, therefore, printed and/or plotted results are given in either the s-plane or the z-plane.

Before execution of this analysis, you must specify which “quantity” of your model should be varied, through
what range, and with what resolution. The parameter to be changed, which is called the root locus parameter,
may be any system parameter or frozen state and is entered via the root locus data form. Calculation of the
zeros of the root locus may also be requested.

Setting up a Root Locus Analysis
The root locus analysis is setup and executed via the Root Locus Analysis Data form. This analysis form is
accessed by first selecting Analysis > Linear and Root Locus... from the main menu bar.

Figure 123 shows the root locus data form with all data fields displayed. To save the settings in this data form,
and to fill in the title, time and initial operating point data fields, refer to “Analysis Data Form”

Reference Manual
Root Locus Analysis

248
Figure 123 Root Locus Analysis Data Form

Specifying the Root Locus Parameter
The root locus parameter is the name of the “quantity” that will be varied from the “Start Value” to the “End
Value” (described below) to produce the root locus. The root locus parameter can be either a parameter name
or a state name. A state may be used as a root locus parameter only if the specified state variable has been
frozen. To enter a root locus parameter, select the “Parameter” data input field (the cursor will blink) and
enter an appropriate name. You can also use the “Pick” option described in the “Model Explorer Window”, to
define the root locus parameter.

Setting the Starting Value
“Start Value” is the initial value the defined root locus parameter will be given for the root locus analysis.
Select the respective data field and enter a starting value.

249Chapter 1: Reference Manual Topics
Root Locus Analysis
Setting the Ending Value
“End Value” is the final value the root locus parameter field will be given for the root locus analysis. Select
the respective data field and enter an ending value.

Setting the Number of Points
The “# of Points” value is used to set the number of points you want on the root locus plot. Select the
respective data field and enter a value. This value minus one equals the number of steps taken from “Start
Value” to “End Value.” For example, if you wish to vary a gain from 0 to 10 in increments of 1 (i.e. 0, 1, 2,...
9, 10), then set Start Value=0, End Value=10, # of Points=11.

Specifying Linear or Geometric Progression
By default, if the value for # of Points is positive, the step size between root locus evaluations is calculated as
a linear progression of steps as indicated by:

step size = (End Value - Start Value)/(# of Points)

Alternatively, if the # of Points value is negative, the step size is calculated as a geometric progression of steps,
where each point is calculated as a factor of the previous step. This factor is calculated by:

factor = (End Value/Start Value)(1/(# of Points -1))

An obvious requirement for specifying a geometric progression is that the value for Start Value must be a
nonzero number having the same sign as the End Value. Otherwise, the point selection will revert to a linear
one.

Most often, for a geometric progression, the hardest quantity to calculate is the value for # of Points (because
you usually know what you want the value of the factor (or base) to be).

As a convenience, solving for # of Points yields an equation of the form:

of Points_value = (log(End Value/Start Value)/log(factor)) + 1

For example, a root locus could be generated having a geometric progression with a factor of 10; this is
analogous to a logarithmic progression. If the Start Value is set to 1 and you wish to go up by factors of 10
to 1000, then set End Value to 1000, and # of Points to -4 .

Calculating Root Locus Zeros
If the zeros of the root locus are to be calculated, select "Yes" following "Calculate Root Locus Zeros:" on the
root locus data form. When you do this, two new fields will appear on your form. These are described in the
following paragraphs.

The root locus zeros will be the zeros of the transfer function between the points specified with “RL Input”
and “RL Output.” Using the textbook definition of root locus, the branches of the locus terminate on the
zeros if the root locus gain is set to an arbitrarily high value. This occurs only if the system is linear with
respect to the root locus parameter, and if the root locus parameter appears as a separable gain in the feed
forward loop. Easy5 does not impose either of these restrictions on root locus calculations. However, for the
zeros to have their traditional textbook meaning, the root locus “Parameter” you define should be a simple
gain parameter such that RL Input = Parameter * RL Output.

Reference Manual
Root Locus Analysis

250
To specify the root locus input, select the respective data field and enter an appropriate input value. You can
also use the “Pick” option to define a root locus input.

To specify a root locus output, select the respective data field, enter an appropriate output value, and press
the RETURN key. You can also use the “Pick” option to define a root locus output.

Requesting Root Locus Plots
If you want a root locus plot, select “Yes” following “Plot Results:” and fill in the appropriate data input fields
as they appear.

Specifying Root Locus Output
The root locus can be plotted in either the s-plane or the z-plane. This is defined by selecting the
“Coordinates” options in the data form. The s-plane plot is the default option.

The “Scales” option in the data form allows you to specify either automatic or manual scales. Automatic scales
is the default option, and is the recommended scale option. If manual scales is chosen, then you must specify
the maximum and minimum values for both the real and imaginary axes.

Root Locus Analysis Method
The root loci are calculated by forming the Jacobian or stability matrix of the system for each value of a root
locus parameter. In other words, your model is re-linearized at each root locus point to accurately track non
linearities in your model. The eigenvalues of each stability matrix are calculated to give the root loci.

This approach is a nonlinear generalization of the linear technique developed by Evans. For nonlinear
systems, this analysis provides an accurate picture of the loci of the system eigenvalues when a system
parameter is varied.

Since this technique does not utilize a single, fixed linear model, the zeros corresponding to the selected root
locus parameter cannot be calculated directly. They can only be approximated by setting the root locus
parameter to a very large value or by requesting calculation of root locus zeros, described later in this section.
See “Root Locus Analysis” for additional information.

Simplifications Made During Linearization
Simplifications are made to improve the efficiency of the Root Locus Analysis. To begin with, a linearity test,
which is usually performed for calculations of the stability matrix and requires that the stability matrix be
calculated twice, is omitted.

Another simplification relates to the columns of the stability matrix. Each column of the stability matrix
requires one call to your model equations. Specifically, static elements are identified by calculating the
complete stability matrix for the nominal system and again for the first value of the root locus parameter. The
elements of these stability matrices are compared to determine which columns are affected by changes in the
root locus parameter. Subsequent stability matrix calculations only reevaluate those columns containing
elements which have been identified as functions of the root locus parameter.

For sampled data systems, the selection of the RL PARAMETER can profoundly affect the execution speed
of the analysis. The most time consuming part of the root locus analysis is the calculation of the eAt matrix

251Chapter 1: Reference Manual Topics
Root Locus Analysis
(where A is the continuous system stability matrix). It is repeated for every value of the RL PARAMETER,
if the stability matrix is found to be affected by the RL PARAMETER. Thus, if the RL PARAMETER does
not affect the continuous system stability matrix, this calculation is skipped resulting in much faster
executions.

Calculation of Root Locus Zeros

If the zeros of the Root Locus analysis are to be calculated, you must specify root locus input and output
parameters. The root locus zeros are the zeros of the transfer function between the points specified. The
sections that follow detail the difference between the “textbook” definition of root locus zero calculations, and
Easy5's approach.

Under the textbook definition of root locus, the branches of the locus will terminate on the zeros if the root
locus parameter is set to an infinitely high value. This occurs only if the system is linear with respect to the
root locus parameter and if the root locus parameter appears as a separable gain in the feed forward loop. If
these criteria are not satisfied, the root locus zeros will not be terminators of the loci.

The Easy5 Approach to Root Locus Analysis
Easy5 allows a root locus to be performed on any constant of your system. This will always yield the system
poles at each value of the root locus parameters. To obtain zeros, you must also specify a root locus input and
output. For the zeros to have their traditional meaning (that is they are the terminators of locus when the root
locus parameter is set to an infinitely high value), the root locus parameter must be a simple gain connection
such that:

RL INPUT = RL PARAMETER * RL OUTPUT

The Root Locus analysis verifies that this relationship exists; a warning will be printed if it is not satisfied.
This warning tells you that, while the Easy5 Root Locus analysis will give you an excellent picture of the
behavior of your system, your intuitive expectations concerning the shape of the loci will not be met.

Note: Exercise care in verifying this relationship between input and output. The first step the root
locus zero analysis takes is to set the root locus parameter to a value of zero, thus breaking
the loop. Therefore, if the root locus parameter, input and output are not as shown in
Figure 124, the resulting transfer function will have no connection between input and output
and Easy5 will print a warning message to this effect in the Analysis Output Listing file.

Reference Manual
Schematic Manipulation

252
Figure 124 Correct Relationship between Root Locus Parameter,
Input and Output for Calculating Root Locus Zeros

Schematic Manipulation
The Easy5 model schematic can be manipulated in a variety of ways. You can move components, either
individually or in groups. You can use Easy5 to locate a single component in a schematic. You can also
manipulate the schematic window by “zooming” in or out over a particular location, or by “panning” to any
part of the schematic you want to view. In addition, Easy5 permits you to reduce the size of the schematic
view so that the entire block diagram is displayed within your schematic window. Then you can return the
schematic view to its previous size.

These capabilities are described in the following sections.

Moving Components
In the course of constructing an Easy5 block diagram, you will often want to reposition a component.
Components can be moved around a schematic using the following methods:

1. Moving components individually.

2. Moving components in groups.

Easy5 uses a method called “drag and drop” to move individual components. This method allows the user to
select a component and “drag” the component anywhere in the schematic, including up and down
hierarchical layers, and then “drop” the component at the desired location.

Moving Individual Components
To move an individual component, perform the following steps:

1. Left click on the component to activate it.

2. Drag the component across the schematic.

3. Left click again to “drop” the component.

Moving Groups of Components
1. Draw a selection box, first define a corner of the box by pointing to the desired location and HOLD-

L. Next, drag your mouse diagonally away from the location where you defined your corner until
everything you wish to be highlighted is inside the box, then release the mouse button.

2. Either move the selected group (by dragging it), or select the Ctrl+M keyboard shortcut. The latter is
useful, if you want to move the group inside a submodel.

3. Move the selection box to where you want to position the components on the schematic and select
that location by clicking the left mouse button.

Selecting a location for the captured components causes Easy5 to redraw your schematic. You can
select as many or as few components in a group as you desire.

253Chapter 1: Reference Manual Topics
Schematic Manipulation
Moving the Window
You look at the schematic pad through the schematic window. Easy5 permits you to move this window over
the pad in order to view different parts of your model. This technique is called “panning.” You can also
position the schematic window farther away from or closer to the schematic pad, in effect “zooming” in or
out on your schematic. The following section describes the methods of moving the schematic window.

You can “pan” (move) the schematic window over any part of the Easy5 block diagram by using the scroll bars
on the right hand side and bottom of the window. To move your schematic window to the left or right, use
the scroll bar at the bottom of your window. In addition, use the Shift+Hold-Left keyboard/mouse
navigation shortcut to pan your model. When in “pan” mode, you will notice a large crossed set of double
arrows that you can move around the schematic.

The “zooming” feature permits you to expand the schematic view (zoom out) or contract the schematic view
(zoom in).

Zoom in on your schematic to increase the level of detail by selecting Zoom In icon from the Edit toolbar
(or Ctrl++). You will see the view of your schematic contract, revealing less of the overall schematic, but more
(increasing the size) of a particular point.

You can continue zooming in by performing the step described previously until the component (or
components) reaches the maximum size possible. Then you can zoom out, reducing the apparent size of the
schematic until it eventually returns to the original view or until it becomes the smallest size allowed by the
software.

Zooming out is performed by selecting Zoom Out icon from the Edit toolbar (or use the Ctrl+- keyboard
shortcut). You will see the view of your schematic expand, revealing more of the overall schematic, but less
(decreasing the size) of a particular point.

Viewing the Entire Schematic
To have Easy5 fill the window with the entire schematic, select View Entire from the View menu, the “View
Entire” Edit toolbar icon, or using the Ctrl+E keyboard shortcut. Easy5 places the schematic window over
the schematic pad to give you the best overall view of your entire block diagram.

Returning to the Previous Schematic View
If, after working in the View Entire schematic mode, you decide to return the view to the detail level that
preceded the selection of that mode, Easy5 has another short-cut feature that performs this in one step. This
feature is called Refresh View, and is selected from the View menu, or by pressing the Space bar.

Locating Components
Your block diagram can become so complex and include so many components that it can be difficult for you
to quickly locate a specific component. However, if you know its exact name (the ID you gave it when you
added it to the schematic), Easy5 can find it for you.

To direct Easy5 to locate a specific component in your schematic, do the following:

Reference Manual
Simulation Analysis

254
1. Select Explore Model from the View menu, rom the Edit toolbar, or using the Ctrl+F keyboard
shortcut.

A (dockable) Model Explorer window that lists all the components along with their inputs and
outputs in your model will be displayed.

2. Double click on any component that you want to open and that component is activated and it’s
properties are displayed.

Simulation Analysis
See also: "Analysis Data Form"

"Integration Methods"

"Interactive Simulation"

"Root Locus Analysis"

"Simulation Monitor"

User Guide, Chapter 4 - Interactive Simulation

Simulation is the process of numerical integration of your model's equation set through time. It is used to
generate time history plots of system variables to evaluate transient or time domain behavior. While
simulation offers you the most accurate view of your model, it also exercises all the non linearities in your
model, and is much more time consuming than the linearized analyses.

Several numerical integration techniques are available with Easy5. It is necessary to provide several methods,
as no single method is appropriate for the wide range of differential equation characteristics that are
encountered in dynamic models. The choice of the “best” integration method depends on a number of
important considerations.

User specified requirements for accuracy, resolution, and duration of transients, and model characteristics
such as natural frequencies, discontinuities, external disturbances, and sampling effects all must be
considered. See Appendix B, for a further discussion of selecting integration techniques.

Setting up a Simulation
All data for setting up a simulation is entered in the simulation data form, which is shown in Figure 125, which
shows all the simulation options and associated data fields.

The sections that follow describe how to fill in the form.

Specifying Initial Operating Point
An operation point that has been previously generated may be restored to define the simulation’s operating
point. This is done by selecting the “Initial Operating Point” input field. A menu will appear displaying all

Note: You can also enter the first character of the component name to help navigate the component
list.

255Chapter 1: Reference Manual Topics
Simulation Analysis
available operating point files. These are files that were either created via the Options > Save Operating Point
menu, or from an analysis defined by the “Save Final Operating Point” function. Further information on
saving and restoring operating points is given in "Saving a Final Simulation Operating Point", and "Parameters -
Defining Input Values".

Reference Manual
Simulation Analysis

256
Figure 125 Simulation Analysis Data Form

257Chapter 1: Reference Manual Topics
Simulation Analysis
Specifying Simulation Times
You can use the simulation data form to identify the time related data for your simulation analysis.You do
this by specifying the following three items:

1. The time at which the simulation should start; the “Start Time.”

2. The time at which the simulation should stop; the “Stop Time.”

3. Depending upon the type of integration method you are using, the integration time step and/or the
data recording rate; the “Time Increment.”

The “Start Time” field specifies the time at which the simulation will start. To change the “Start Time” from
its default value of zero, select the “Start Time” data field and enter a new value.

“Stop Time” specifies the time at which the simulation will stop. The total number of simulated seconds that
a given simulation will run is calculated by subtracting the “Start Time” from the “Stop Time.” To define the
“Stop Time”, enter a value in the “Stop Time” data field.

The “Time Increment” simulation value is used in three different ways depending upon the type of integrator
you have chosen. First and foremost, “Time Increment” always defines how often simulation data will be
made available for printing or plotting, for both variable and fixed step integrators. In the case of a 10.0
second simulation run, when “Time Increment” is 0.01, 1000 sets of simulation data would be gathered and
made available for printing or plotting.

Secondly, if you are using a variable step integration method, the “Time Increment” value is used to calculate
the initial time step that will be taken at the beginning of the simulation.

Finally, when a fixed step integration method has been selected, the “Time Increment” value defines the
integration step size for the fixed step integration algorithm chosen, in addition to the data recording rate.

To enter a “Time Increment” value, select the “Time Increment” data field and enter a value.

Setting Up Simulation Options
There are some noteworthy options used to setup plot and output formats.

Add Plot Points at Switch/Discrete Events By default, Easy5 plots out data at fixed time intervals. This
advanced option allows you to save plot data at switch and discrete events that occur outside the plot time
interval. “Yes” is the default mode, which turns on this option, and provides precise plot data (with the ability
to track “sharp corners”). For simulations with a large occurrences of switch and discrete events you may wish
to select “No” to turn off this option to decrease the amount of plot data.

Auto-Start Monitor The simulation Monitor is a special tool used to monitor simulation results while the
simulation is running. By default, this advanced setting is set to “No” to turn off this feature. “Yes” launches
the monitor. For more information, refer to “Simulation Monitor”.

Note: The simulation time specified above is not the actual clock time the simulation will run on
your computer. The amount of real time the simulation will require is a function of the speed
of your machine.

Reference Manual
Simulation Analysis

258
Export Plot Data as CSV This plot option exports the plot data as an CSV (comma separated value)
filenamed <modelname>.<runid>.csv. “No” is the default setting which turns off the feature. To turn on
this feature, select “Yes”.

Export Plot Data as XRF (ADAMS/PPT) This plot option exports the plot data to an ADAMS XRF
(ADAMS results) file, named <modelname>.<runid>.res. This file can then be plotted using the
ADAMS/PPT Plotter. “No” is the default setting which turns off the feature. To turn on this feature, select
“Yes”.

Print Detailed Diagnostics This advanced option provides a diagnostic tool to monitor the performance of
the integrator. By default, the option is set to “No”. To turn this on, select “Yes”. The diagnostic data is
written to the analysis file. Note that this tools generates a large amount of data and should be used with
caution. For more information, refer to “Simulation Troubleshooting”.

Multiply Error Control (affecting continuous states) This general option is used to globally change the error
controls affecting continous states. This is used to affect the integration performance of your simulation.
Please refer to “Setting Global Error Controls” for more details.

Setting up the Integration
To setup the integration, first, specify which integration method you wish to use. The “Int. Method” defines
the integration mode or method that will be used during simulation.

The default method is BCS Gear. If you want to select a different method, CLICK-L- and hold, and a menu
of choices will appear as shown in Figure 126. Point to the desired method and release the mouse button.

259Chapter 1: Reference Manual Topics
Simulation Analysis
Figure 126 Integration Methods Menu

You also have the option of setting the integration diagnostic flag to print out the integration steps. To do
this select the “Print Detailed Diagnostics (this run only)?” = “Yes” advanced setting.

The “Yes” setting is only active during a single run, and always defaults back to “No”. As a result, you must
set this flag each time you submit the analysis.

This feature prints out information about the how the integrator is working, including such details as the
current Time, step size, integration order, and number of calls to the Jacobian. This diagnostic feature is
generally useful only when using a variable step integration method. The diagnostic messages are printed to
the Analysis Output Listing file.

Reference Manual
Simulation Analysis

260
Setting up Simulation Plots
The values of up to 8000 variables can be plotted during a given simulation (4 variables per display, 2000
displays). Outputs can be plotted as a function of time, or as a function of another variable. You can plot
outputs on individual sets of axes, or you can “over-plot” up to four outputs on one set of axes.

To plot data you do three things:

1. Specify that you want plots generated. See the Plotting tab.

2. Define how often you want the values plotted, i.e., the resolution of the plots. These settings are
found in the General tab, under Plot/Print Rates.

3. Specify the output variables to plot.

In the Plotting tab, specify that you want plots by selecting “Yes” following “Plot Results:” in the simulation
data form. Notice that when you select “Yes”, other relevant settings appear in the data form.

You use these fields, to specify the specific model names to be plotted, and whether or not you want the
simulation monitor to auto-start (see “Simulation Monitor” for information on using the Monitor Simulation
feature).

“Primary Plot Rate” is an integer that Easy5 multiplies by the “Time Increment” value to determine how
often it should record data. For example, if you wanted data plotted every 0.1 seconds, and “Time Increment”
was 0.01 seconds, you would set “Primary Plot Rate” to 10.

Figure 127 shows the relationship between “Time Increment” and “Primary Plot Rate”.

Note: The Print Detailed Diagnostic setting may generate a large amount of data. You should only
use this when you need detailed information about how the integrator is working. It is very
useful for isolating integration problems.

261Chapter 1: Reference Manual Topics
Simulation Analysis
Figure 127 Relationship between Time Increment, Plot Rate, and Print Rate and TIME

You specify plot variables by selecting the Plot Variables = “Selected” on the Plotting tab of the simulation
form. The simulation plot specification form as shown in Figure 128 appears.

There are 2000 lines in the simulation plot specification form. Each line defines one of up to 2000 separate
screen displays. (You look at displays one at a time with the Easy5 Plotter.) Up to four dependent variables
can be plotted in each display. You can plot up to 8000 variables during one simulation run.

Note: The “Time Increment” value specifies how often data is made available for printing and/or
plotting, not how often it actually will be printed and/or plotted. Be sure you understand the
difference between “Time Increment” and “Primary Plot Rate”.”

Reference Manual
Simulation Analysis

262
Figure 128 Plot Specification Form

To input data into this form, you must first select the desired input field.

There are three methods to input data into the selected input field:

1. The name of any variable can be typed directly into the boxed input field. If you enter a name that
does not exist in your model, an error message will be given.

2. Any name can be “picked” from the schematic block diagram (or Model Explorer window). Simply
select a component in the schematic (or in the Model Explorer window) and a filtered list of available
names will be displayed to select from. Please see "Model Explorer Window" for further information. See
Figure 128 for an example of using selected plot variables.

3. Another method is to plot all output data. To do this, use the (default) setting for “Plot Variables” =
“All”. Every output name automatically be included in the resulting plot file. Please note that this is
the default setting, but as your model grows, this setting should be replaced with manually specified
names per the “Selected” setting.

263Chapter 1: Reference Manual Topics
Simulation Analysis
Dependent variables can be plotted as a function of “time” (the default) or any other output variable. By
default, dependent variables are plotted on individual sets of axes. However, you can over plot all variables for
one display on a single set of axes using the “Overplot?” option.

Easy5 automatically scales plot axes for you, unless you want to set up your own scales with the “Manual”
scaling option. These advanced plotting options are described in the following paragraphs.

Overplot? To request overplotting, select “Yes” in the “Overplot?” advanced Plotting tab setting for each
display you want over plotted. All dependent variables defined on the respective display line will be plotted
on one set of axes.

Auto-Scale? When “Yes.” is selected, scaling will be done automatically for the respective display. If you don't
want automatic scaling, use the “No” setting, and specify the appropriate values for Manual scales. Please
note that manual scaling can also be done using the Easy5 Plotter later.

Setting up Simulation Print Output
Simulation data can be written to the output listing file or can be totally suppressed. In general, printing is
independent of plotting, so you can print and/or plot any combination of simulation outputs.

The steps for printing results are similar to those for setting up plots. Specifically:

1. You tell Easy5 that you want to print data.

2. You specify how often output variables are to be printed.

3. You identify the output variables to be printed.

There are three choices for indicating that you want to print data: “No”, “All” and “Selected.” “No” is the
default option resulting in no data being printed. If “All” is used, Easy5 will print all simulation output
variables to the analysis output listing file at the interval you specify.

The “Selected” print option allows you to specify which output variables will be printed. If you choose
“Selected”, an additional settings are displayed in the data form to allow you specify a list of names. Use these
fields in addition to the appropriate “Primary Print Rate” (General Tab) field to specify the variables to be
printed and the rate at which they will be printed, respectively.

Figure 129 is a sample of a “Selected” output listings. If ten or less variables are requested for output, the data
will be listed in columns as shown in the figure. Otherwise, the data is displayed in a paragraph format.

The “Primary Print Rate” (General tab) data field defines how often you want output data printed. “Primary
Print Rate” is an integer that Easy5 multiplies by the “Primary Plot Rate” value, to determine how often it
should print data.

Caution: The Plot All Data method will plot every output in the model, to a maximum of 8000
variables. This can potentially generate a huge plot file. Make sure you have sufficient disk
space when creating large plot data files!

Reference Manual
Simulation Analysis

264
Figure 129 Sample of Printed Simulation Analysis Output

For example, if you wanted data printed every 1.0 seconds, and “Time Increment” was 0.01 seconds and
“Primary Plot Rate” was 10 (i.e., the plot rate is 0.1), you would set “Primary Print Rate” value to 10.
Figure 127 previously showed the relationship between “Time Increment”, “Primary Plot Rate”, and “Primary
Print Rate.”

You specify the print variables by selecting the Print tab on the simulation data form. The print specification
form shown in Figure 130 appears on your screen.

Use this form to specify up to 40 output variable names. Variable values will be printed as a function of time
in columnar form in the order specified when reading from left to right.

Note: The “Time Increment” value specifies how often data is available for printing and/or
plotting, not how often it actually will be printed and/or plotted. Be sure you understand the
relationship between “Time Increment”, “Primary Plot Rate” and “Primary Print Rate.”

265Chapter 1: Reference Manual Topics
Simulation Analysis
Figure 130 Print Specification Form

You insert variable names in the simulation print specification form using the same method to insert names
in the plot specification form, as described in the previous section.

Specifying Secondary Plotting and Printing Rates
During a simulation it is possible to print and/or plot data at rates different from those established with the
“Time Increment”, “Primary Plot Rate”, and “Primary Print Rate” parameters, by specifying secondary print
or plot rate parameters. For example, at the beginning of a simulation you may want a high plot rate of 1000
samples per second to get a close look at a start up transient, yet after a few seconds need a relatively slower
rate of 100 samples per second for the rest of the run.

To set up secondary output rates, select “Yes” after “Use Secondary Print/Plot Rates?” in the Advanced
portion of the General tab. Additional data fields will appear on your screen.

These fields are described below:

 The “Secondary StartTime” field is used to define the simulation time at which the secondary time
period should begin.

 The “Secondary Stop Time” field is used to define the simulation time at which the secondary time
period should end.

 The specified value for “Secondary Time Incremenet” will be used in place of the “Time Increment”
value during the secondary time period.

Note: There is no need to specify TIME as a print variable. TIME is automatically printed as the
first variable in the output listing file.

Reference Manual
Simulation Analysis

266
 The specified value for “Secondary Plot Rate” will be used as the “Time Increment” or “2nd Time
Incr” (whichever is active) multiplier during the secondary time period.

 “Secondary Print Rate” is an optional value. If it is specified, it will be used as the “Plot Rate
Multiplier” or “Secondary Print Rate” (whichever is active) during the secondary time period.

Saving a Final Simulation Operating Point
To save the operating point calculated during the last time step of the simulation, select “Yes” following “Save
Final Operating Point?”. A data field, “Final Operating Point Name” will become active on your form. The
name you enter in this field is used to name the “saved” operating point. To subsequently restore the saved
operating point for another analysis, this name will appear in the list of operating point names that Easy5
offers you during the “Restore operating point” function.

Executing the Simulation
There are two methods of executing (submitting) the simulation: execute without the symbolic debugger
(default method), and execute with the symbolic debugger.

Nominal Execute
Selecting the Execute the current analysis analysis toolbar icon will start the simulation job as a background
process. If the model executable needs to be rebuilt, it will do that automatically.

Execute With Debug
There are times when the standard print and plot output from Easy5 is not sufficient for isolating a problem
that is occurring in your model. For these cases you should use the system symbolic debugger. First, select the
Build > Debug Mode setting. Then, make sure that the model executable is rebuilt, by selecting the Build >
Create Executable menu item. This generates a debuggable version of the model executable. Then, to execute
with debug select the Debug the current analysis toolbar icon (which should now be active). For more
information, see “Debugging the Model and Analysis”.

Centralized Activation of Interactive Simulation Widgets
In the Advanced section in the General Tab is a setting called Interactive Simulation Activation. This option
provides you with a way to centrally control the activation of potentially active Interactive Simulation
components in your model by including the following 3 choices: None Active, TI Only, All Active.

The Interactive Simulation components are special components belonging to the Easy5 Interactive
Simulation (IS) library that once placed in your model and activated, provide the means to communicate

Note: When you save the operating point at the end of a simulation, the final simulation time (the
“Stop Time”) is also saved as part of the operating point data. When the operating point is
restored, the correct “Time” value is also restored.

267Chapter 1: Reference Manual Topics
Simulation Analysis
interactively with the background simulation. Normally, they are controlled by the ACT parameter for each
individual IS component.

However, to provide a more centralized method for controlling these components, Easy5 provides these
options as described below:

Please see User Guide, Chapter 4 - Interactive Simulation for more details on Interactive Simulation components.

Simulation Outputs Results
Simulation outputs can be plotted and/or printed. These outputs are described in the following sections.

Plots
If simulation plots were generated during your analysis, you can look at them with the Easy5 Plotter. When
the analysis is complete, the plotter will automatically displays and plot the data from the analysis. See User
Guide, Chapter 7 - Easy5 Plotter for information on how to use the plotter.

The Simulation Output Listing
To examine the output listing generated by a simulation, you first need to select Display Analysis Output
Listing (Ctrl+L) from the Analysis menu. When the output listing file displays on your screen, search for
the string “SIMULATION ANALYSIS” to position yourself at the start of the simulation output. The output
listing can be broken down into two basic parts: an input data summary, and the simulation output.

Information is listed at the top of the form which should reflect the simulation options you specified earlier
in the simulation data form. The “PRATE” (Primary Print Rate), “OUTRATE” (Primary Plot Rate),
“PRINT CONTROL” (the flag which indicates output format), “INT MODE” (Integration Method
Number), “TINC” (Time Increment), “TMAX” (Max Time), “PRATE2” (Secondary Print Rate),
“OUTRATE2” (Secondary Plot Rate), “PLOT EVENTS” (Add Plot Points at Switch/Discrete Events) and
“PRINT2” from, to (Secondary Start and Stop Times) values are listed in the header above the title you
assigned.

Below the input data summary are the results from the simulation run itself. Depending on the selection
made for PRINT RESULTS in the simulation data form one of the following displays:

 A listing of all states, rates, and variables at every print output interval.
 A listing of only selected quantities.
 No listing.

Value Description

None Active All otherwise active IS components in your model will be deactivated.

TI Only All otherwise active IS components, except for IS/TI components will be deactivated. The
TI block provides the minimum Interactive Simulation overhead and feedback with your
model simulation, and is most commonly used.

All Active All otherwise active IS components are activated (default)

Reference Manual
Simulation Monitor

268
After the last time point, the total number of CPU seconds expended during the simulation is listed.

Simulation Monitor
The Simulation Monitor is a special tool used to monitor the simulation results while the simulation is
running. This is generally used to monitor long simulation runs. The monitor takes the “live” simulation
results as it is being generated, and inserts the data into the Easy5 plotter while the simulation is running.

What is the Simulation Monitor?
The Simulation Monitor is a special simulation tool used to display the simulation data in the plotter window
while the simulation is running. The data generated by the simulation is written to memory, and is read in
by the plotter and displayed in the plotter window.

The plotter is the basic Easy5 Plotter, but is run in the “monitor” mode. It reads in data generated from a
simulation and updates the plot data at a given time interval set by the user. Because it uses the basic Easy5
plotter, you can choose different displays, apply a layout template, and generally use the basic features of the
Easy5 plotter.

Activating the Simulation Monitor
There are two ways to activate the Simulation Monitor feature, First, in the simulation analysis data form, set
the Monitor Simulation radio button to “Yes”. When the simulation is executed, the plotter will
automatically displays in the monitor mode and display the simulation data.

Another method of activating the Simulation Monitor is while the simulation is running. When a simulation
is running, the Analysis > Monitor Simulation menu will be active. Select this menu option (or the F6
shortcut key) and the plotter displays in the monitor mode, and displays the simulation data.

Simulation Monitor Plotter Features
In the monitor mode, the plotter is identical to the basic Easy5 plotter, but contains an additional pulldown
menu called Monitor with the following options:

 Get Current Data

Gets the current data from memory and updates the plot.

 Automatic Data Update

This option is toggled On or Off. When On, the plotter automatically updates the plot at an update
interval set by the menu item Set Data Update Interval.

 Set Data Update Interval

Used to set how often the data is updated. The data interval is in wall clock time, in seconds.

269Chapter 1: Reference Manual Topics
Simulation Troubleshooting
Running the Simulation Monitor
The simulation writes the data to a temporary binary file named EZ5_PLOT.HDR. The plotter loads in the
data from this file and displays the data. When the plotter first opens, it takes a few seconds before the data
is available.

At first, no data is displayed. It takes a few seconds for the simulation data to become active and available.
When ready, the data will automatically be plotted in the plot window and will update the data at a user-
defined interval. To set how often you wish the data to be updated (in seconds), select Monitor > Set Data
Update Interval. Enter the time in seconds. This sets how often the plotter updates in wall clock seconds (not
simulation seconds). This makes sense because, slow simulation runs that take a long time, should be updated
in real time, not simulation time.

By default, the plot data is automatically updated. To turn the automatic update of plot data on or off, select
the plotter menu Monitor > Automatic Data Update.

While the simulation is running, you may zoom in/out, view data, and perform the standard plot functions.
You can even apply a layout format. However, this format is not saved.

When the simulation is finished, the temporary plot file is closed, and the final Easy5 plot file is automatically
opened and displayed.

Simulation Troubleshooting
See Also: "Debugging the Model and Analysis"

"Integration Methods"

Several types of problems commonly occur during simulation. Problems manifest themselves by either
causing an abnormal termination, or by taking an inordinate amount of CPU time to complete a simulation.
Solving these kinds of problems or trying to improve the performance of your simulation is not always a
simple task and, unfortunately, there is no prescribed formula for success. However, the following guidelines
and techniques are useful.

Type of Failure
When the simulation fails, the following message is displayed in the message line:

Analysis has stopped before completion - errors may have occurred.

When this occurs, you must determine what type of failure occurred. To do this, examine the analysis output
listing file (also called the ezapl file). This file is usually opened for you automatically when a failure occurs.
However, if this is not the case, then select Analysis > Display Analysis Output Listing... to open the file:

Note: You cannot perform all Plotter operations, such as exporting plot data, editing plot files,
while in the Monitor mode.

Reference Manual
Simulation Troubleshooting

270
Analysis Output Listing
The Analysis Output Listing file displays warning and error messages that are important. Search for the
following warning message and data:

 ******** WARNING ***********
THE Easy5 ANALYSIS PROGRAM HAS TERMINATED ABNORMALLY
MODEL VALUES AT TERMINATION WERE AS FOLLOWS:
STATES:

.......... list of states and values
RATES:
.......... list of the rate of the states and values
VARIABLES:
.......... list of variables and values
PARAMETERS:
.......... list of parameters and values

This warning message tells you that the simulation has failed, and it also lists the TIME, and all model data
at the time of failure (states, rates, variables and parameters).

You can examine the warning message and data to determine the following:

 At what TIME did the simulation fail? If TIME=0, the failure occurred during calculation of initial
conditions. Otherwise, it may have failed into the simulation.

 Perform a general check on all data values - do they fall within a reasonable range?
 Look at the states, rates and variables at the time of failure. Do the state values make sense? If some

state values are abnormally large, (>1E15), then this may indicate an integration failure. Are any of
the rates very large? If so, the integrators may have failed.

Scroll to bottom of this file and you’ll see the following message and data:

-------------- VARIABLES IN COMPUTATIONAL ORDER ------------

....... list of variables.......
 ********** WARNING *********
THE ABOVE VALUES REPRESENT MODEL STATUS AT ABNORMAL TERMINATION OF THE
Easy5 ANALYSIS PROGRAM

The variables are listed in the order in which they are computed in the model source file (model_name.f or.c).
This can be useful information. Scan through the list (from left to right) and gauge the values. If a variable
has an abnormal value, then the failure took place either when the variable was calculated or just before. For
example, if a variable has a value of “-I”, this indicates an arithmetic indefinite, meaning that an improper
calculation occurred, such as a divide by zero. This will help locate where in the code the failure occurred.

The very last lines in the analysis output listing file will usually display important error messages that will tell
you what type of failure occurred. Some of these messages are summarized below.

Simulation Failure Error Messages
When the simulation fails, the error message is printed at the bottom of the analysis output listing file. When
you get any of these messages, you must debug your model. See “Debugging the Model and Analysis” for

271Chapter 1: Reference Manual Topics
Simulation Troubleshooting
information how to debug your model and resolve these errors. The most common error messages are
summarized as follows.

Divide by Zero
If your code has a division equation and the denominator has a value of zero, you will get a floating point
error message as follows:

FLOATING POINT ERROR: DIVISION BY ZERO
USE DBX (OR DBXTOOL) AND THE DBX WHERE COMMAND TO FIND THE LOCATION OF
THE ERROR

This is one of the most common bugs. Use the debugger to locate where the division by zero occurs.

Invalid Operation
An invalid operation occurs when an invalid mathematical operation occurs, such as the square root of a
negative number. The following error message is displayed:

FLOATING POINT ERROR: INVALID OPERATION
 USE DBX (OR DBXTOOL) AND THE DBX WHERE COMMAND TO FIND THE
LOCATION OF THE ERROR

Overflow
A mathematical overflow condition occurs when the numeric value exceed the numeric limit of your
machine. The following error message is displayed:

FLOATING POINT ERROR: OVERFLOW
 USE DBX (OR DBXTOOL) AND THE DBX WHERE COMMAND TO FIND THE
LOCATION OF THE ERROR

This can happen if the system is unstable (poles in the right hand plane). The state value will grow until an
overflow occurs. Use the debugger to determine which data value is overflowing. Also check your model for
incorrect connections and possibly a positive feedback that causes the system to be unstable. Perform a Linear
Model Generation to determine the eigenvalues at the time of the simulation failure.

Write Your Own Diagnostics to the Output Listing File
You can write your own diagnostic messages and print out data to help you debug your code. Just write to
the unit number called IWRITE. IWRITE is an Easy5 reserved word that writes the output to the Analysis
Output Listing file.

For example, the following lines of code can be added to a Fortran component. This is just an example of
how you can use IWRITE to write any data to the output listing file.

C If DIAGNST flag is on (=1) then print out diagnostic message & data
 IF ((DIAGNST.EQ. ONE) .AND. (VALVE .GT. ZERO)) THEN
 WRITE(IWRITE, *) ’*** Pressure and Flow Data; Valve= OPEN ***’
 WRITE(IWRITE,*) ’Time=’, TIME, ’Pressure= ’,PRES, ’Flow=’,FLOW
 ENDIF

Reference Manual
Simulation Troubleshooting

272
Monitoring CPU Time During a Simulation
The cost of performing a particular analysis, as measured in CPU seconds, is given at the end of each
simulation. The efficiency of the various integration techniques can be assessed by this measure. The amount
of CPU time consumed during a simulation run can be monitored with the CPUSEC variable. This is an
Easy5 variable representing the number of CPU seconds used for the current analysis. By plotting this variable
versus TIME, you can determine if any portion of a simulation run is consuming a disproportionate amount
of the total CPU time. By comparing runs using different integration methods, you can determine a measure
of relative efficiency between methods. You will have to weigh this measure against the required accuracy, as
the accuracy may change between methods.

Killing a Simulation Run
If the simulation performance slows and almost grinds to a halt it could be due to the failure of the variable
step integration method. The integration algorithm will repeatedly decrease the integrator step size until it
finally reaches the machine’s epsilon value (smallest numeric value). This can consume a large amount of
CPU time. If this occurs, you should kill the job and analyze what’s going on. Either select the “Stop the
currently running analysis” analysis toolbar icon, the “[Terminate Simulation]” interactive simulation
button (active when running with interactive simulation widgets), or select the following menu items to kill
the job:

Analysis > Stop Current Analysis

The following messages will be displayed in the status message area:

Trying to stop background process...
Signalling background process...
Process successfully stopped

Plot the data (if there is any) and open an examine the Analysis Output Listing file and look at the data. Also,
try repeating the simulation, and turn on the integration diagnostics as described in the next section.

Integration Problems
For fixed step methods, the selection of TINC is critical and should be about ten times smaller than the
smallest natural frequency in your model. In some cases, it should even be smaller (some standard component
require a fixed step integration method). If the value for TINC is too large, the simulation will be numerically
unstable and will appear to “blow up” when, in fact, its eigenvalues appear to make it look stable.

For variable step methods, in particular the BCS GEAR, STIFF GEAR and ADAMS methods, a simulation
may get bogged down for several reasons. One common reason is that there are discontinuities that occur
during the transient. Discontinuities are defined as derivatives that exhibit discontinuous behavior. When this
occurs, the integrator will try to find the exact point in time where the discontinuity occurred; this may take
a lot of time, and it may eventually fail. Sometimes, the values of the ERROR CONTROLS may also need
tuning. Experience has shown that it is often better to reduce error controls for states where accuracy is
critical.

273Chapter 1: Reference Manual Topics
Simulation Troubleshooting
II Component For Integration Information
A useful diagnostic component for these methods (BCS GEAR, STIFF GEAR, ADAMS, or RADAU) is to
use the II - Integration Information component from the General Purpose library. This component outputs
information about how the central integrator is performing, including the step size, order, number of
completed steps, number of calls to EQMO, and the number of Jacobian evaluations. To use this, add the II
component to your model (this component is not connected to any other component), then, plot and/or
print the outputs of the II component.

Print Integration Diagnostic Function
Another useful diagnostic tool for these methods (BCS GEAR, STIFF GEAR, ADAMS, or RADAU) is the
“print integration diagnostics” function. In the Simulation Analysis Data Form, turn on the “Print Detailed
Diagnostics” (General tab, advanced) setting by selecting the “Yes” option.

A large amount of data will be printed to the Analysis Output Listing file, so try to keep the simulation time
down to a reasonable value (set Stop Time to a small value). You want to get a detailed picture of the portion
of the transient where you suspect a problem is occurring. This diagnostic printout, which includes a
definition of terms, can be very helpful in showing which Easy5 states are posing problems to these
integration methods.

You can also use the II component to turn the diagnostic print on and off at a specified time interval. This
allows you to print the diagnostic only during a time of interest.

An example of this output obtained by turning on the integration diagnostic is shown below. First, the output
from few successful steps is shown, then the diagnostic print of a failed integration step is given.

Diagnostic Output of Successful Integration Steps:
NRKVS COMPLETED STEP NO. 1 AT TIME= 3.98551E-03 USING H= 9.05797E-05

WITH MAX H= 1.00000E+37 ERROR= 1.07686E-08
 NRKVS COMPLETED STEP NO. 1 AT TIME= 4.07609E-03 USING H= 9.05797E-05
WITH MAX H= 1.00000E+37 ERROR= 9.90447E-09
 NRKVS DETECTED DISCONTINUITY AT TIME= 4.1666666666667D-03
 NRKVS COMPLETED STEP NO. 1 AT TIME= 4.16667E-03 USING H= 9.05797E-05
WITH MAX H= 1.00000E+37 ERROR= 9.10190E-09
 NRKVS DETECTED DISCONTINUITY AT TIME= 4.2572463768116D-03
 NRKVS LOCATED DISCONTINUITY AT TIME= 4.1666666666667D-03
 NRKVS COMPLETED STEP NO. 1 AT TIME= 4.16767E-03 USING H= 1.00000E-06
WITH MAX H= 1.00000E+37 ERROR= 1.17505E-03
 NRKVS COMPLETED STEP NO. 2 AT TIME= 4.16967E-03 USING H= 2.00000E-06
WITH MAX H= 1.00000E+37 ERROR= 1.26049E-15
 NRKVS COMPLETED STEP NO. 3 AT TIME= 4.17367E-03 USING H= 4.00000E-06
WITH MAX H= 1.00000E+37 ERROR= 4.02591E-14

Important: Default error controls are usually sufficient for most problems. However, they can be
adjusted manually. Error controls should typically fall in the range of 1.E-8 > x > 0.001, but
certainly not be set smaller than 1E-10. Certain application, such as hydraulics, work better
with tighter error controls (and so defaults are smaller for such states), but please consult the
application library notes for specific advice.

Reference Manual
Simulation Troubleshooting

274
 NRKVS COMPLETED STEP NO. 4 AT TIME= 4.18167E-03 USING H= 8.00000E-06
WITH MAX H= 1.00000E+37 ERROR= 1.28376E-12
 NRKVS COMPLETED STEP NO. 5 AT TIME= 4.19767E-03 USING H= 1.60000E-05
WITH MAX H= 1.00000E+37 ERROR= 4.07892E-11
 NRKVS COMPLETED STEP NO. 6 AT TIME= 4.22967E-03 USING H= 3.20000E-05
WITH MAX...

Diagnostic Output of a Failed Integration Step

DIAGNOSTIC MESSAGE INTERPRETATION
 IF PREDICTOR AND CORRECTOR STEPS DISAGREE OR CORRECTOR CONVERGENCE FAILS,
THE NAME, VALUE, AND RATE FOR THOSE STATES WITH AN
 ERROR RATIO GREATER THAN ONE ARE PRINTED. THESE ARE PRECEEDED BY, -P- OR
-C- , AND FOLLOWED BY:

T = THE VALUE OF TIME AT THE LAST SUCCESSFUL STEP
H = THE CURRENT INTEGRATION STEP SIZE
ORD = THE CURRENT ALGORITHM ORDER
ER = THE ERROR RATIO FOR EACH STATE
NS = THE INTEGRATION STEP NUMBER
JE = THE NUMBER OF JACOBIAN EVALUATIONS
CPU = THE CPU SECONDS USED SINCE START OF RUN

--*-*-*-* DRIVE2 COMPLETED STEP **** AT TIME= 15.399045 CPUTIME= 71.000
HUSED= 0.614286E-03 ORDER=5 NFE= 31600 NJE= 439
 --*-*-*-* DRIVE2 COMPLETED STEP **** AT TIME= 15.399660 CPUTIME=
71.000 HUSED= 0.614286E-03 ORDER=5 NFE= 31601 NJE= 439
 --*-*-*-* DRIVE2 COMPLETED STEP **** AT TIME= 15.400000 CPUTIME=
71.000 HUSED= 0.340308E-03 ORDER=5 NFE= 31602 NJE= 439
 -P- Actuator_po= 614090. RATE= 4.3538E+05 FAILED AT T= 15.4000 H=
3.4031E-04 ORD= 5 ER= 4.4E+06 NS= 28188 JE=439 CPU= 71.00
 -P- X1 TF = 1.766675E+07 RATE=-5.9791E+08 FAILED AT T= 15.4000 H=
3.4031E-04 ORD= 5 ER= 3.8E+04 NS= 28188 JE=439 CPU= 71.00
 -P- Pitch_angle= 855224. RATE= 9.1152E+06 FAILED AT T= 15.4000 H=
3.4031E-04 ORD= 5 ER= 2.0E+02 NS= 28188 JE=439 CPU= 71.00

Controlling Print Diagnostic Using the IDIAG Flag
The simulation data form provides a method for printing integration diagnostics as described in the previous
section. However, this will print the diagnostics for the entire simulation, which may result in excessive print
data.

You may use the IDIAG flag in a code block (User Code or Library component) to turn the integration print
diagnostic on or off at will. Setting IDIAG=1 turns on the integration diagnostics, and IDIAG=0 turns it off.

An example of code using IDIAG is shown below. In this example, the input parameter DIAG_ON sets the
time at which to initiate printing the integration diagnostic, and the input parameter DIAGOFF sets the time
at which to terminate the print.

* DIAG_ON= Time at which to turn diagnostic on
* DIAGOFF= Time at which to turn diagnostic off
 if (TIME .ge. DIAG_ON .AND. ITINC .eq. 1) IDIAG= 1
 if (TIME .gt. DIAGOFF .AND. ITINC .eq. 1) IDIAG= 0

275Chapter 1: Reference Manual Topics
Single Call Analysis
Single Call Analysis
During model checkout, and prior to some analyses, you will want to make a "single call" to your model
equations and print the results of the model calculations (states, rates and variables). When you request a
single call analysis, the states are set to their initial condition values, time is set equal to the “Time=” value
defined in the data form, and the model is executed once. The Single Call Analysis issues a PRINT command
to the analysis input file. In effect, this is a snapshot of your model at the current operating point.

The Single Call Analysis is setup and executed using data form is shown in Figure 131. To open this data form,
select Analysis > Miscellaneous > Single Call...The general usage of this data form is described in “Analysis
Data Form”. This data form also contains the “Debug this analysis” toolbar icon that allows you to run this
analysis with the symbolic debugger. See “Debugging the Model and Analysis” for information on this feature. The
“Num. Model Calls” settings is unique to this data form and is described in the following paragraphs.

Figure 131 Single Call Analysis Data Form

The Single Call Analysis allows you to specify the number of model calls as either one or two. One model call
executes the single call one time through your model, whereas, two model calls executes the single call two
times.

The one model call is the most commonly used option. This is used to give you a quick snapshot of your
model. This analysis can also be used to locate arithmetic errors in your model equations by selecting the
Build > Debug Mode option from the main menu bar. Print statements generated by this debug option
execute only during the single call analysis.

For more information on using the debug option, refer to "Debugging the Model and Analysis". The one call
Single Call Analysis can also be used in conjunction with the Linear Model Generation Analysis, to obtain a
linearized picture of the operating point.

Reference Manual
Sort Blocks

276
The two model call option is used to determine if there is “internal algebraic memory” being set in your
model equations (your User Code or Library Component code). Internal algebraic memory occurs if a state
or variable is defined in such a manner that the value changes even though time remains fixed (i.e. no
integration step is taken). Internal algebraic memory will cause any variable step integration method to fail.

The two model call option is used to check for the existence of internal algebraic memory. Execute the Single
Call Analysis with the two model call option. When the analysis has completed, analyze the output listing
file. The output data from the first call of the single call can be visually compared with the output data of the
second single call. Since time has not changed, the output data should be identical. If an output variable or
state has changed, then you have determined that the model contains internal algebraic memory.

For models containing large amount of data, you may find it helpful to edit the output listing file and create
two files; the first file containing the output of the first single call, the second file containing output of the
second single call. Then perform a “difference” between these two files to detect changes in data values.

Sort Blocks
See Also: User Guide, Chapter 5 - Code Components

Sort blocks allow you to break up your user-defined Fortran or User Code code into one or more blocks of
code that can then be sorted by Easy5 to build an explicit model. This powerful feature gives you some
control over the model sorting process and allows you to break implicit loops in your model. This section
review model sorting, and how to define sort blocks in Fortran and User Code components.

Model Sorting
Before Easy5 builds the executable source file (the model_name.f file which contains the Subroutine EQMO),
the model generation program sorts the components to define an explicit model. An explicit model is one for
which all output variables are calculated before they are used as input to other components. Essentially, Easy5
looks at the input/output relationships of all components in your model, and reorders the logical sequence of
the component to form an explicit model.

You can build your graphical on screen model and place the components in any order and Easy5 will
automatically sort the components to create an explicit model. Since many standard components are
represented by subroutine calls in EQMO, this reordering process consists of rearranging the order in which
the component subroutine calls appear in the model. For other components, such as Fortran and User Code
components which contain in line code as opposed to subroutine calls, the input/output relationship is used
to determine the order in which these components will appear in EQMO. Therefore, if your model has been
reordered, you may notice that the structure of EQMO differs from that specified in your graphical model.

Caution: Algebraic memory causes variable step integrators to fail! If you detect the occurrence of
internal algebraic memory, analyze your user-defined code (contained in User Code or
Library components) and remove the algebraic relationship that causes the internal memory.
If this is not possible, you will be forced to use a fixed step integrator.

277Chapter 1: Reference Manual Topics
Sort Blocks
However, there are times when a system model cannot be placed into an explicit from because it is an implicit
model. When this occurs, Easy5 warns you and describes the algebraic loops that cause the implicit model
(see “Implicit Model”). If the implicit loop is caused by a Fortran or a User Code component, you may be able
to break this loop by using “sort blocks” as described in the sections that follow.

Defining Sort Blocks
Sort blocks can only be define in a Fortran or a User Code component. Sort blocks are defined by enclosing
code in special Easy5 commands called BEGIN SORT BLOCK and STOP SORT BLOCK. The BEGIN SORT
BLOCK command tells Easy5 to suspend sorting. This command will preclude further sorting until the end
of the component or until you include the STOP SORT BLOCK command in your code. You may use BEGIN
SORT BLOCK and STOP SORT BLOCK to divide your Fortran and Library code into as many sort blocks as
needed. Each sort block is then “seen” by the model builder as a separate component, and can then be moved
(sorted) into a location that forms an explicit model.

A simple example of defining sort blocks is shown in Figure 132.

Figure 132 Example of Defining Sort Blocks

Note: You should make a habit of analyzing the executable source file. This file shows you how the
components and equations are sorted to form an explicit model.

FLOW = MILAMP * SLOPE
IF (ABS(FLOW) .GT. MAXFLO) THEN
 FLOW = SIGN (MAXFLO,FLOW)
ENDIF
PRESSURE= FORCE/AREA

BEGIN SORT BLOCK
 FLOW = MILAMP * SLOPE

IF (ABS(FLOW) .GT. MAXFLO) THEN
 FLOW = SIGN (MAXFLO,FLOW)

ENDIF
STOP SORT BLOCK
BEGIN SORT BLOCK

PRESSURE= FORCE/AREA
STOP SORT BLOCK

Sort Block A

Sort Block B

Non Sorted Code

Sorted Code

Reference Manual
Stability Margins Analysis

278
This example shows how a body of Fortran or Library Component code can be broken into two sort blocks.
The code in the upper box is one block of unsorted code. This has been broken into two sort blocks in the
lower box, designated as sort block A and B. The sorted code will allow the model sorting routine to move
the two sort blocks anywhere in the model as required.

For example, if the calculation of PRESSURE in sort block B is needed “upstream” in the model, then this
line of code will be extracted and moved before the placement of the component that requires the variable
PRESSURE. This will break the implicit loop that results when using the unsorted code.

Notice that in Figure 132, the user could have used two Fortran (or Library) components to input the code;
the first component would contain the code in sort block A, the second component the code from sort block
B.

This puts the burden on the user to know a prior how the equations and mathematical relationships are
defined when building a model, and it also requires the usage of a large number of components. Sort blocks
are a powerful feature that takes the burden off the developer. With sort blocks, you can put the burden of
sorting code and blocks of code on the Easy5 model builder.

Fortran and Library Component Sort Blocks
By default, Fortran component code is not sorted. That is, the entire code in a Fortran component is
considered to be a single sort block. To break a Fortran component code into multiple sort blocks, you must
first select the [Sorted] checkbox in the code editor toolbar. Then, you can use the BEGIN SORT BLOCK and
STOP SORT BLOCK commands to define individual sort blocks. Please note that without these sorting
commands, each line of code will be treated as a separate sort block!

If the Sorted box is unchecked, Easy5 (specifically, the code generator) only sorts on inputs that are connected
-- it does not look at the sort block code to confirm that quantities defined (anything on the left-hand-side
of an equals “=” sign) are assigned by variables already defined previously. A Fortran sort block with no
connected inputs is thus always sorted “to the top” (but always after special “mandatory” library components
that define global variables for a particular application library).

If the Sorted box is checked, the Easy5 code generator not only sorts on the inputs that are connected, but it
also analyzes the (sort block’s) code body to make sure that all quantities defined (anything on the left-hand-
side of an equals sign) are defined in a previous (or current) sort block.

There is no specific option for sorting for Library components. All library components have sorting activated.
However, by default, Library component code is also not sorted, through the default inclusion of a BEGIN
SORT BLOCK command at the top of the library component code body. Therefore, to define sort blocks, you
need to use alternating STOP SORT BLOCK and BEGIN SORT BLOCK commands, as appropriate. For more
information on sorting Library Component code, refer to "Using Library Component Sorting Options" in the User
Guide, Chapter 12 - Library Components. This chapter also contains a good example showing an implicit loop and
how the implicit loop is broken using sort blocks.

Stability Margins Analysis
See Also: "Analysis Data Form"

"Stability Margin Analysis Method"

279Chapter 1: Reference Manual Topics
Stability Margins Analysis
The Stability Margins analysis calculates maximum and minimum values for user specified parameters that
result in stable system operation. This analysis also determines the oscillation frequencies that result if either
boundary is exceeded. Stability margins for up to ten system parameters can be calculated in a single analysis.

The Stability Margins analysis does not work with systems that contain discrete states, that is, sampled data
systems. The Stability Margins analysis assumes that the system being analyzed is linear with respect to the
parameters selected. If this assumption is not a good approximation, then the answers produced by stability
margins may be misleading. Root Locus analysis will calculate accurate gain margins for situations in which
the assumption of linearity does not hold.

Setting up a Stability Margins Analysis
The stability margins analysis is setup and executed using the Stability Margins Analysis Data Form. This
data form is accessed by first selecting Analysis from the main menu, then selecting Stability Margins... from
the Linear menu. Figure 133 shows the stability margin data form with all data fields and options displayed.

To save the settings in this data form, and to fill in the title, time and initial operating point data fields, refer
to the topic, “Analysis Data Form”.

Defining Stability Margins Parameters
You can specify up to ten parameters for which stability margins will be calculated. Stability margins
parameters are entered in the ten data fields following “Parameters” in the stability margins data form. The
only way to place parameter names in the data form is to select components in your on screen schematic using
the “Pick” option. When you do this, Easy5 will display a list of parameter names associated with the
component selected. Select a name from this list and Easy5 will copy that name into the data form for you.

To delete parameters from this section, select the name with your left mouse button (use a triple CLICK-L
to highlight the entire field), and enter the space bar to clear the field.

Limitations
The stability margin search is limited to parameter values of the same algebraic sign as the nominal value. For
example, zero is the lowest magnitude that will be considered for the lower stability boundary of a parameter
with a positive nominal value.

Reference Manual
Stability Margin Analysis Method

280
Figure 133 Stability Margins Analysis Data Form

Stability Margin Analysis Method
The method used to determine stability margins is a frequency domain technique of Bode. This technique is
numerically superior to approaches such as the Routh array approach, and is much faster than the direct
approach of repeated eigenvalue determination.

As shown in Figure 134 Equivalent Stability Margin System, the parameter K for which the stability margin is to be
calculated can be thought of as providing a single loop feedback around the system model.

Figure 134 Equivalent Stability Margin System

Solving Equation 1 for the open loop transfer function in terms of Kn, N(s) and P(s), and substituting jω for
s, yields:

281Chapter 1: Reference Manual Topics
Stability Margin Analysis Method
 Equation 1

where

 Equation 2

Thus, the method simplifies to a search for the frequencies that cause the phase of R(jω) to be 0o regardless
of the sign of Kn.

A range of 0 < ω < ωmax is searched to find those values of ω at which the phase of R(jω) is zero. At this
frequency, ω0, the limiting value of K, K0, can be calculated by:

Equation 3

Magnitudes of R(jω) > 1 result in lower K limits. Magnitudes of R(jω) < 1 determine upper Ko limits. The
usual definition of the stability margin is the ratio of maximum K, to nominal Kn, and is obtained from
Equation 3 to be:

Equation 4

Search for Zero Phase
A range of ω from 0 to ωmax is searched for zero crossings of R(jω). ωmax is arbitrarily established as two times
the magnitude of the largest eigenvalue of the nominal system. Zero frequency is included, since a real
divergence is indicated by a zero phase of R(0). After ω = 0 has been checked, the search begins at some low
frequency, ωmin. Since only phase angles near 0 are of interest, small angle approximations may be used for
the phase of R(jω). This approach avoids time consuming trigonometric calculations.

Several different values of w may be found that cause the phase of R(jω) to go to zero. The lower stability
limit is determined by the maximum value of 1/R(jω0) which is less than 1. The upper stability limit is
determined by the minimum value of 1/R(jω0) which is greater than 1. Any remaining values of w which
cause the phase of R(jω) to go to zero correspond to divergence frequencies which occur beyond the critical
stability limits. Oscillations will occur at these frequencies if the parameter is increased beyond the critical
stability bounds. If such values exist in the searched region, they will be printed out by the program as
noncritical stability limits.

The characteristic equation of this system with the stability margin parameter equal to its nominal value, Kn,
is

K0

Kn

R jω()
---------------=

R jω() 1
N jω()
P jω()
---------------–=

K0

Kn

R jω0()
2

--------------------------=

K0

Kn

Kn

R jω0()
2

--------------------------=

Reference Manual
States

282
N(s)= P(s) - KnZ(s) Equation 5

The roots of N(s) are the eigenvalues of the nominal system, and the roots of P(s) are the eigenvalues of the
system with K = 0.

To concentrate the analysis on the stability boundary of the complex plane, (the imaginary axis), set
s = jω in Equation 5.

Those real values of K, Ko which will cause N(jω) = 0, will produce roots of the characteristic equation on
the imaginary axis of the complex plane.

Solving the above Equation 5 for such values of K results in:

Equation 6

Equation 7

Since you are interested in only real values of K0 of , you need consider only those values of ω which cause

the phase of P(jω)/Z(jω) to equal 0o or 180o. Further, if the nominal parameter Kn < 0, only values of 180o
need be considered, and if the nominal parameter Kn > 0, only the values of w that produce 0o phase need
be considered.

The approach to determining K0 is as follows: the roots of N(s) and P(s) of Equation 5 are the eigenvalues of
the nominal system and the eigenvalues with K=0, respectively, and are designated as:

Ni i=1,2,3, ... ,n eigenvalues for K=Kn
Pi i=1,2,3, ... ,n eigenvalues for K=0

Thus, N(s) and P(s) can be stated in terms of their roots as:

Equation 8

Equation 9

States
See Also: "Integration Methods"

Note: The sign of the feedback is determined by the sign of K and is not assumed to be negative,
as is often the case in textbooks.

0 P jw() K0Z jw()–=

K0 P jw() Z jw()()⁄=

P s() s Pi–()
i 1=

n

∏

=

N s() s Ni–()
i 1=

n

∏

=

283Chapter 1: Reference Manual Topics
States
"Switch States"

"States: Defining Values and Controls"

There are four types of state variables used in Easy5: continuous states, delay states, sample states (also called
sample-hold states), and switch states. These states are used in many standard components and can be added
to any User Code and Library components you write. The following sections describe each type of state.

Continuous States
Continuous states are model variables that result from integration of first-order, ordinary differential
equations. Any time you model a continuous (non digital) part of a system, you will use continuous states.
You can define continuous states in User Code and Library components.

Although continuous states are not truly continuous (that is, their behavior is being approximated on a digital
computer), you can think of them as having values at all points in time, as shown in Figure 135. This example
shows the value for continuous state X as a function of time.

Figure 135 Continuous State as a Function of Time

Resetting Continuous States
Since the values of continuous states are determined by differential equations, they usually vary smoothly as
time advances. There are rare situations in which the value of a continuous state needs to change
instantaneously, usually when the actual physics being modeled has been radically simplified, or the
continuous state is an approximation of a discrete process such as a digital filter.

Resetting continuous states in User Code components (and library components as well) is accomplished
using the “RESET STATE” command, which has the following syntax:

RESET STATE, continuous_state_name = value

Where continuous state name is the name of a continuous state (scalar, vector, or matrix) and value is either
a Real*8 literal if the state is a scalar or an array of the same size as the state which has been loaded with the
new values of the state components.

This command causes the Easy5 variable step integration algorithms to restart every time the “RESET
STATE” command is executed and hence may cause performance problems if executed often for large models.

Reference Manual
States

284
An example of a model using RESET STATE is a bouncing ball modeled by assuming that when the
ball impacts the ground its velocity reverses sign and is reduced by a factor KR called the coefficient of
restitution. A Fortran component implementing this model would have continuous states height
(initial condition = initial height), velocity (initial condition = 0), switch state netAcceleration (initial value
= -32 for acceleration of gravity), and input parameters coef_restitution (a positive number less than one),
and smallv (a small positive number such that if the rebound velocity is less than smallv, the ball stays at rest
on the ground). The code for the model is as follows:

Derivative of, velocity = netAcceleration
Derivative of, height = velocity
If (height .LE. 0 .and. velocity .LT. 0) Then

If (Abs(velocity) .GT. smallv) Then
 Reset State, velocity = -coef_restitution*velocity
Else
 Reset State, velocity = ZERO
 Set Switch, netAcceleration = ZERO
End If
 End If

Sample States
Sample states are one of the two types of discrete states used to model sampled-data systems; the other is delay
states. When you use any Easy5 discrete standard components to model a digital part of a system, you will
be using a sample state. You can define sample states in User Code and Library components.

A sample state is the output of a function of the form:

Xt+= f(Xt-, u, t)

where:

u is one or more input;

f is an algebraic function defined on the domain

to, to+t, to+2t, ..., to+nt and t+ and t- represent values

just after and just before sampling intervals.

The value of a sample state changes only at sample times. Easy5 monitors the passing of simulated time and
updates the value of the sampling state only at the appropriate sampling interval, τ.

285Chapter 1: Reference Manual Topics
States
Consider the simplest case:

Xt+= It-

where I is some input signal. The value of the sample state will change only at sample times and will be the
value of the input at that time as shown in Figure 136.

Figure 136 Sample State Values Held Constant for a Sample Period

Delay States
Delay states are one of the two types of discrete states used to model sampled-data systems; the other is sample
states. When you use one of the Easy5 discrete standard components (except SH) to model a digital part of
a system, you will be using a delay state. You can define delay states in User Code and Library components if
you use discrete standard components.

The value of a delay state is the result of evaluating first-order difference equations of the form:

Xt+τ = f(Xt, u, t)

where t is the sampling interval associated with the state and f is an algebraic function.

The domain of the function f is the sequence of discrete intervals of time:

to, to+t, to+2τ, ..., to+nτ

So the value of the delay state will change only at these discrete intervals. Easy5 monitors the passing of
simulated time and updates your delay states only at the appropriate sample times.

Consider the simplest first-order difference equation:

Xt+τ = It

where It is some input signal.

The value of the delay state will change only at sampling intervals and its value will be the value of the input
signal t seconds before, as shown in Figure 137.

Reference Manual
States: Defining Values and Controls

286
Figure 137 Delay States Change Only at Discrete Points

Switch States
Switch states allow you to efficiently use any of Easy5's variable-step integrators to model systems containing
extremely discontinuous phenomena. In the past, discontinuous effects like hard limiting, coulomb/static
friction, and hysteresis could be only approximated in your model and integrated with fixed-step integrators.
For more information, see the major topic "Switch States"

States: Defining Values and Controls
All the states in your Easy5 model are stored internally in what is called the "state vector." This vector is as
long as the total number of continuous, delay, sample, and switch states in your model.

The values given to states, or the elements of the state vector, at any point in time are determined by your
model equations and are calculated by Easy5. For continuous states, your model calculates the time
derivatives, which are then used by the numerical integration algorithms to calculate a new state value.

See Also: "Data Types"

"Operating Point"

"States"

State Initial Conditions
Every state in the model has a corresponding initial condition value, which is defined in the data table of the
component that produces the state. These values are used as the initial operating point values for all analyses,
and define the point about which the linearization is performed for the set of linearized analyses. There are
three methods for defining the initial operating point:

1. Loading the initial conditions manually.

2. Using the final set of state values from a simulation or steady-state analysis.

3. Calculating a set of initial conditions in a User Code component.

Initial conditions need only be set if they have nonzero values. You can assign new values by simply entering
the new values under the “Value” column in the component data table. Values can be entered with a

287Chapter 1: Reference Manual Topics
Steady-State Analysis
maximum of 9 significant digits and will be interpreted as double precision floating point numbers. The
newly entered values will be saved as initial conditions after the “OK” push button is selected.

The topic “Operating Point” describes different methods of generating initial conditions and operating points.

Error Controls
A quantity known as an “error control” is associated with every state in your model. Error controls are used
in two ways by the Easy5 program: to determine an integration step size control for variable step integration
during simulation, and as a perturbation step size during linearized analyses. See the topic, “Guidelines for
Setting Error Controls” for important information on error controls that can be used with simulation analysis.

Perturbation Step Size
During linearized analyses the error control is used to set the perturbation step size for each state. This step
size is used when calculating the partial derivatives required to generate linear models of your nonlinear model
about an operating point. During linearized analyses, the ideal scaled value for an error control (or step size)
for a nonlinear system should be about one 10th of one percent of the state's nominal value. In most
circumstances, the default value of 0.001 (and 1.e-6 for switch states) should provide you with satisfactory
results.

Freezing States
Any state in your model can be rendered inactive or “frozen.” A frozen state is held at its initial condition value
regardless of the value of its calculated rate in the model. This feature provides a convenient method for
simplifying your model. You may wish to do this to temporarily isolate certain “loops” of your system,
eliminate certain high frequency modes of your system, isolate the cause of instabilities, eliminate certain
degrees of freedom of your system, or open feedback paths.

In order to determine if a state is frozen, examine the component's data table. Either “YES” or “NO” will be
displayed under the column marked “Frozen.” To change this value, simply place the cursor over the
appropriate value and press the left mouse button. The default value for all states is unfrozen (“NO”).

Steady-State Analysis
See Also: "Analysis Data Form"

"Temporary Settings File"

The Easy5 steady-state analysis is used to algebraically find an equilibrium point for your model. An
equilibrium point is defined as a point where the root mean square value of all active system rates is near zero.
Within Easy5 this is termed a “steady-state” operating point.

Achieving a steady-state operating point is a very important step in initializing your nonlinear model for two
reasons: it assures you that results from linearized analyses can be used to predict stability, and it eliminates
“start up” transients during simulation.

Reference Manual
Steady-State Analysis

288
The method used to find a steady-state operating point is an algebraic one, and therefore is much less time
consuming than performing a simulation to achieve the same result, a so-called “null transient.”

Guiding the Steady-State Analysis
A nonlinear model may contain several valid equilibrium points. When you execute a steady-state analysis,
Easy5 searches for a steady-state point starting from the operating point defined by the current set of initial
condition values.

By default, all initial conditions are given a value of zero. If you do not specify any initial condition values,
Easy5 will start its search from this zero-IC point. For many physical quantities, a value of zero does not make
much sense (for example, absolute temperature, pressure). Therefore, you should assist the steady-state finder
by defining an initial operating point that is as “reasonable” as possible.

Model Validity Bounds
For highly nonlinear systems, finding a reasonable operating point can be especially important, but extra care
should be exercised because the valid operating regime may be limited. For instance, a system containing
states that describe pressures and energy terms may utilize a series of table look up data to acquire
thermodynamic data. For such a system it is important to stay within the bounds of the table data to maintain
model validity.

Types of Steady-State Analyses
Two types of steady-state analysis may be performed: a single point steady-state analysis, or a steady-state scan.
A single point analysis is simply that it finds only one steady-state point. A scan, on the other hand, allows
you to find a series of steady-state points while one of your system parameters, called the steady-state scan
parameter, is changed through a specified range of values. Both types use your model's initial conditions as a
starting point.

Setting up a Steady-State Analysis
All data for setting up a steady-state analysis is entered in the steady-state data form, shown in Figure 138. This
figure shows all the options and data fields that could possibly appear on this form. The sections that follow
describe how to fill in this form. To save the settings in this data form, and to fill in the title, time and initial
operating point data fields, refer to "Analysis Data Form".

289Chapter 1: Reference Manual Topics
Steady-State Analysis
Figure 138 Steady-State Data Form

Specifying the Maximum Number of Iterations
Easy5 uses an algebraic/iterative approach to locate a steady-state point. Since it is possible that there are no
steady-state points in your model, or that Easy5 may be unable to locate one, a maximum number of
iterations value must be specified so that the program knows when to stop searching. A default value of 200
“Maximum Number of Iterations” is provided. If you want to specify some other number, just select the data
field following “Maximum Number of Iterations” and enter a new value.

Specifying the Tolerance
The tolerance is the root-mean-square (RMS) error convergence criteria. The default RMS error of 0.0001
is usually adequate, but sometimes a smaller error is required. You can set this field to a smaller error to
increase the accuracy of the result. However, you should not set this field to a value larger than the deafult.
Also, if you set this field to a very small value (that is, less than 1e-8) you may get a message that the analysis
did not converge in your output listing. This may mean that the steady-state solver could not satisfy the
requested RMS error.

Reference Manual
Steady-State Analysis

290
Finding a Single Steady-State Point
To find a single steady-state point, select the value “Single-Point” for “Analysis Mode” on the data form with
your left mouse button. Easy5 will find a single steady-state point when you execute the analysis.

Using the Steady-State Scan Option
If you want to activate the steady-state scan option, select the “Scan” value for the “Analysis Mode” on the
data form with your left mouse button. Notice when you do this that new options and data fields appear on
the data form. These additional options and fields are used to set up a steady-state Scan analysis, and are
defined in the following paragraphs.

During a Steady-State Scan analysis, each incremental “starting point” (after the first one) will begin with the
previously calculated steady-state operating point, thus minimizing the amount of work required for each
“step” of the scan. Also, if you request that the steady-state operating point be saved, only the final point will
be saved for a scan.

The steady-state scan parameter is the name of the quantity in your model that will be varied during the
analysis. You enter the name of this quantity in the data field following “Steady State Parameter ” on the data
form. To specify the quantity, select the data field and enter the name, or use the “pick” method. Valid
quantities include all system parameters, states that have been frozen, and the system variable, Time.

Another option is available for entering a scan parameter name. After selecting the parameter data field, select
a component in the schematic. When you select a component with your left mouse button, Easy5 will display
a list of all of the possible scan parameters in the Model Explorer window. If you select one of the names in
this list, Easy5 will copy it for you into the scan parameter data field. Using this option will help you to avoid
mistakes when entering scan parameter names.

Start Value is used to specify the starting value for the steady-state scan parameter. To enter a value, select the
“Start Value” data field and enter a number.

Stop Value is used to specify the ending value for the steady-state scan parameter. To enter a value, select the
“Stop Value” data field and enter a number.

The # of Scan Points data field defines the number of equally spaced values from the starting value to the
ending value that the steady-state scan parameter will be given during the Steady-State Scan analysis. If you
choose to create steady-state scan plots, this value will determine the number of data points that will appear
on the plots.

The values of up to 8000 outputs can be plotted during a Steady-State Scan analysis. Outputs are usually
plotted as a function of the steady-state scan parameter. You can plot (up to 2000) outputs on individual sets
of axes, or you can “over-plot” up to four plots on one set of axes. When you want to plot steady-state scan
data, you have to do two things: 1) tell Easy5 that you want plots generated and 2) specify the output variables
to plot.

To tell Easy5 that you want steady-state scan plots, select “Selected” or “All” following “Plot Variables” in
the Plotting tab of this form. To specify the output variables that you want to plot, use the “Selected” value.
Then, simply add names to the list of Dependent Variables offered. This form is used similar to definition of
simulation plotted variables as described in “Setting up Simulation Plots”.

291Chapter 1: Reference Manual Topics
Steady-State Analysis
Printing Steady-State Results
By default, the values for all the states, rates, and variables in your model at the steady-state point(s) will be
printed to the analysis output listing file. If you don't want any printed output, select “None” following
“Print Variables” on the Printing tab of this data form.

If you just want to print selected variables during the analysis, you should select “Selected” following “Print
Variables” on the Printing tab. When you do this, you will be able to specify Dependent Variables in a list
below, in a similar fashion as plotted variables.

Saving a Steady-State Operating Point
If you want to save the operating point calculated during a single analysis, or the last value calculated during
a Scan analysis, select “Yes” for the “Save Final Operating Point?” field in the General tab for this the data
form. A new data field named “Final Operating Point Name” will appear on your form.

The name you enter in this field will be used to name the “saved” operating point. A list of these names will
be presented to you when you use the Options > Restore Operating Point... menu option.

Steady-State Analysis Outputs
Steady-State analysis outputs can be in plotted and/or printed formats. These output formats are described
in the following sections.

Steady-State Plots
If steady-state scan plots were generated during your analysis, you can look at them by selecting Analysis >
Plot Current Results (Ctrl+Shift+P). For information on using the Easy5 Plotter, see the User Guide, Chapter 7
- Easy5 Plotter

The Steady-State analysis output listing may be examined by selecting Analysis > Display Analysis Output
Listing (Ctrl+Shift+L). Once this file has been opened, search for the string “STEADY-STATE ANALYSIS”
to point you to the start of the Steady-State analysis output printout.

Aside from the usual header information, the first item to notice is whether convergence was achieved. Easy5
will also print out the maximum number of iterations and the final root-mean-square value for all the active
rates of your system.

Thereafter, depending on what you specified on the print specification data form, you will see the values that
were obtained for all states in order to achieve convergence the solution. Values for output “VARIABLES”
and “PARAMETER VALUES” are also included.

As a check of the asymptotic stability at the steady-state operating point, a linearization made about this point
yields the system eigenvalues. In order to be asymptotically stable, no positive real parts should be present.

Note: When you save the final operating point at the end of this analysis, the “Time” value specified
in the data form will also be saved as part of the operating point. This means that if you
restore an operating point that was saved at the end of a Steady-State analysis, each “Time”
data field in every analysis data form will be updated with the saved “Time” value.

Reference Manual
Steady-State Analysis Method

292
For a more complete linear analysis output, you should run a Linear Model Generation analysis at this new
operating point.

Steady-State Analysis Method
See Also: "Steady-State Analysis"

The algorithm used by the Steady-State analysis is an algebraic manipulation of the system states based on a
Newton-Raphson iterative approach using knowledge of the system Jacobian in converging to a solution.
This method involves a solution of a set of nonlinear algebraic equations obtained by setting your model
differential equations to zero. The solution process is repeated until either the norm of the rates becomes less
than 0.0001, or the maximum number of iterations has been reached. Evaluation of model rates is limited to
those corresponding to continuous states, and to continuous and delay states for sampled-data systems.

Delay states, however, are treated as continuous first-order lags during steady-state analysis. Sample states and
switch states both drop out of the evaluation, and their rates are simply set to the value of their corresponding
states during the analysis.

This process continuously checks whether any state in your model causes the Jacobian matrix to become
singular. A singular matrix is a matrix with a zero determinant, which would manifest itself, for example, as
a zero row or column in a given matrix. When such a matrix is inverted, as is required during the steady-state
solution, the calculation fails. To prevent this, if a singular Jacobian is detected, the corresponding state will
be frozen at its current value and the solution process will continue.

Finally, eigenvalues are calculated at the steady-state (solution) operating point to give you a measure of the
asymptotic stability about this point.

A Singular Jacobian
A singular Jacobian matrix indicates either that a state in your model has no effect on the other states in your
model (it is behaving like a “free” integrator), or that a state in your model is unaffected by all other states in
your model (it is behaving like it is not part of your model). Sometimes, due to numerical inaccuracies, an
ill-conditioned problem can also cause a singular Jacobian.

For example, if a state in your model described the position of a piston, and during the steady-state solution
the position of the piston hit its upper limit, it would cause a singularity in your system Jacobian matrix. Any
positive perturbation of the other states in your model would not affect the position, which is limited.

Also, if using tables which do not allow linear extrapolation, the steady-state finder may exceed a table
boundary, get “clamped”, and cause a singular Jacobian.

The Determination of System Eigenvalues
To provide you with information about the asymptotic stability at the steady-state operating point, a
linearization is performed about this point. This analysis only occurs if you have selected the “Calculate
Eigenvalues” steady state analysis option. Easy5 automatically selects the correct form of linearization for
either a continuous or a sampled-data system. From this linearization, the system eigenvalues (in either the
s-plane or the z-plane) are calculated.

293Chapter 1: Reference Manual Topics
Steady-State Analysis Method
Steady-State Analysis Troubleshooting
Certain approaches have proven beneficial to achieving a good steady_state operating point in a timely
manner. These approaches include: a piece-wise solution, convergence, and reasonableness.

A Piece-Wise Solution
For relatively small models (with fewer than 25 states) exhibiting no enormous non linearities, it is usually
possible to find a steady-state operating point with just one steady-state analysis. For larger models it is often
better to approach the problem in stages: first finding a steady-state point for one part of your model by
freezing states associated with the rest of your model, saving that operating point, and unfreezing the states;
then, starting with the saved operating point, performing another steady-state analysis for the whole model.
Often, this piece-wise approach is much more successful for large nonlinear models than a "brute-force"
approach.

Poor Convergence
If a model does not achieve convergence within the maximum number of iterations, it is usually an indication
of a modeling inconsistency. For example, it could be an indication that some conservation law is being
violated (such as Conservation of Mass, Energy, or Kirchhoff's laws). You can increase the maximum number
of allowable iterations, but if the model has not converged within, say, 200 iterations (twice the default value
of 100), it probably will not help to increase the maximum number of iterations further. Instead, you should
check your model equations carefully.

Check for Reasonableness

Carefully check the values of all variables and states after a steady-state analysis to ensure that you are within
your valid operating regime. For example, it may be feasible to end up with an operating point where the
temperature or pressure is negative, or the steady-state angle-of-attack (for airplane simulations) is too large.
If an operating point is determined invalid, you may have to obtain a better starting point and try again.

Figure 139 illustrates the importance of having a reasonable starting point for finding a valid steady-state.

Figure 139 Steady State Analysis Requires a Reasonable Starting Point

Reference Manual
Steady-State Analysis Method

294
Steady-State May Fail to Converge
Steady-State analyses may fail to converge to a solution for many reasons including the following:

 A steady-state point is too far away from the initial operating point and the algorithm fails
 No steady-state point(s) exists
 Nonlinear models have not been properly modeled with switch states and the algorithm fails
 The “maximum number of iterations” variable is exceeded
 The problem is too complex and the algorithm simply fails

Steady-State analyses may fail to locate the correct (the one you want) steady-state point because the
algorithms converges to a steady-state point closer to its starting point. In addition to this, the steady-state
analysis may locate a steady-state point, but the steady-state point is unstable. To guard against this, Easy5
also calculates the eigenvalues at the respective point and they should be checked to verify stability.

Overcoming Steady-State Non-Convergence
If the steady-state fails to converge due to any of the reasons cited above, try the following suggestions.

Increase Number of Iterations
By default, the number of steady-state iterations is set to 200. Increase this to 300, and if it still fails try 400.
In general, if the steady-state doesn’t converge within 400 iterations, then increasing the number further will
likely not help.

Try a New Initial Condition Operation Point
A poorly defined initial condition operating point is one of the primary reasons for steady-state failure. You
are responsible for setting a proper initial condition! By default, all state initial conditions are zero. It is obvious
that a state that calculates absolute temperature should not have zero as an initial condition. A temperature
of absolute zero is not a valid operating point and in most cases will cause the steady-state algorithm to fail.
Try setting different state initial condition values. For information on this, see “Operating Point”.

Try performing a short simulation and save the final operating point. This may allow the transients to start
decreasing. Then re-load the saved operating point and try the steady-state again.

Generate the Jacobian Matrix and Eigenvalues
Execute a Linear Model Generation to obtain the Jacobian matrix and the eigenvalues. Please ensure that
eigenvalues have been selected in the “Calculate Eigenvalues?” setting. (There is no need to define linear
model inputs/outputs). Examine the output of the linear model analysis. Jacobian large numeric values
indicates poor scaling or an ill posed system. Re-do the model units. Large positive eigenvalues indicates
incorrect data or bad connections.

Decrease Error Controls
The state’s error control is used as a perturbation step size during the steady-state search. Decreasing the error
control may help some convergence difficulties. The error controls may be decreased on a state-by-state basis.

295Chapter 1: Reference Manual Topics
Stop and Exit Flags
However, it is easier to perform a global change. To do this, simply set the “Multiply Error Controls
(affecting continuous states)” setting to a value less than 1, say in “decades”, or subsequent values of powers
of 10. For example, to reduce the global error control by a factor of 10, set the value to 0.1.

Print Output at Each Iteration
You can print out the steady-state data at each iteration point during the steady-state search. This should only
be used for diagnostic purposes to help determine the sources of steady-state convergence problems. To do
this, create an auxiliary input file and enter the following single command:

PRINT CONTROL = x

where x is the print control setting number:

x = 6 prints all states, rates, and variables at each iteration

x = 7 prints the Jacobian matrix and all states, rates, and variables

Stop and Exit Flags
See Also: "Termination Commands"

"Fortran Component"

"C Component"

There are several ways to stop an analysis and exit Easy5. Depending on how you need to stop an analysis,
there are several flags and calls to routines you can use.

Terminating Using the ISTOP Flag
A global variable named ISTOP is provided for you to control termination of a particular analysis, usually a
simulation. You should do this in the form of a conditional block of code in a Fortran, C, or library
component. This block of code should detect the occurrence of a terminating event (at a valid checkpoint
such as ITINC) and then set the variable ISTOP to the appropriate value as described in the table below.
This is often useful when validity checks are placed in your model.

Reference Manual
Submodels

296
Submodels
A submodel is a group of components that when grouped together, form a subset of the model. Easy5 uses
submodels to create hierarchical layers of the block diagram, in essence, creating a three-dimensional display
of the model’s block diagram. The ability to create hierarchical layers of a system block diagram is useful in
two ways. First, it allows the user to divide the system model into submodels that logically model subsystems.
And second, submodels reduce the complexity of large block diagram schematics.

Submodel features are best shown using an example. Figure 140 shows an example of how submodels are used
in Easy5. The upper schematic shows the Easy5 schematic block diagram developed to model a two axis
rocket nozzle control system. This block diagram is annotated for instructional purpose, to better describe
the subsystems.

For example, the components defining the rigid body dynamics are encapsulated with a cross-hatched lines
and labeled “Rigid body dynamics.” Two additional subsystems are defined as “Flexible body dynamics”, and
“Control system”. This model has been converted into an equivalent schematic block diagram using
submodels as shown in the lower schematic of Figure 140. Notice how each subsystem has been made into a
submodel.

Hierarchical Layers
Submodels are used to create hierarchical layers. This feature is best described by examining the “control
system” submodel. Notice in the upper schematic block diagram of Figure 140, that the control system box

Value Description

ISTOP =1 User-requested termination of a simulation, where the termination should be considered
a "normal” termination. This method of controlling a simulation is typically used when
testing on a certain event occurring. Subsequent analyses, if defined, will be executed.

ISTOP =2 User-requested termination of a simulation, with indication of an error condition to the
GUI. This will cause the simulation to stop, and the Analysis Program Listing to
automatically pop up. Typically, this occurs from validity checks from the application
libraries - flagged via a "FATAL ERROR" message. Subsequent analyses, if defined, will
be executed.

ISTOP =3 Easy5-generated termination due to a failure in the numerical integration (matrix?) Users
should not set this value for ISTOP.

ISTOP=4 Immediate termination of a particular analysis. No subsequent analyses will be executed.
This is useful when an invalid model condition is detected, and further execution of any
analysis would be meaningless.

Caution: Do not attempt to stop the program by inserting a RETURN, STOP, or END statement in
your Fortran or library component code. This will result in loss of all or most of your printed
and plotted data!

297Chapter 1: Reference Manual Topics
Submodels
contains two digital compensator components that are also encapsulated with a box defined as “digital
compensator.” These two components can be defined as a second submodel within the “control system”
submodel. This results in multiple hierarchical submodel layers as shown in Figure 141.

The top layer contains the main schematic block diagram. This can be thought of as the “root” layer from
which all other submodels branch-out into lower layers. Opening the “control system” submodel moves the
user down one layer in the block diagram hierarchy. Opening the “digital compensator” submodel from this
first layer will move the user down one additional layer into the lowest hierarchical layer.

Submodels are merely a graphical feature used to facilitate in displaying the model’s block diagram. The use
of submodels does not alter the nature of the Easy5 components; that is, component connections and data
are not affected when using submodels. Unlimited layers of submodels may be created and manipulated.

Reference Manual
Submodels

298
Figure 140 Example of Using Easy5 Submodels

block diagram converted
 to submodels

299Chapter 1: Reference Manual Topics
Submodels
Figure 141 Example showing 2 Hierarchical Submodel Layers

Reference Manual
Submodels

300
In the next section, the submodel menus and features will be described showing how the user can easily move
up, down, and across the hierarchical layers by opening and closing submodels.

Submodel Menu
The Submodel menu is used to create, edit, and in general, explore and manipulate submodels.

To open this menu, select the Submodel menu from the window menu bar. The Submodel menu is shown
in Figure 142.

Figure 142 Submodel Menu

The options given in the submodel menu are explained in greater detail in the following sections.

Defining a Submodel
To create (or define) a new submodel, select Define..(Ctrl+H) from the Submodel menu. One or more
components must be defined as a submodel. The user defines which components are to be included in the
submodel by using a selection box to capture the desired component(s). Easy5 provides instructions in the
message line telling the user which steps to take.

The selected submodel components become highlighted and a dialog opens to enter a submodel name.
Submodel components have the same naming requirements as other components - that is, the name must be
defined with four or less characters. Enter a submodel name that appropriately describes the submodel, and
select the OK button to close the dialog.

The selected components will “collapse” into a single submodel icon. The default submodel icon is shown in
Figure 143. The submodel descriptor displays above the icon and is given the default description of
“Submodel.” The editing of the submodel name and descriptor is described in “Submodel Labels”.

Note: The selected submodel components are highlighted. If the submodel components are
incorrectly chosen, then select the “CANCEL” push button from the dialog box, and re-
define the submodel.

301Chapter 1: Reference Manual Topics
Submodels
Figure 143 Default Submodel Icon

Opening and Closing a Submodel
The submodel must be “opened” to examine the contents of the submodel. Opening a submodel is similar
to examining any Easy5 component. Just select the submodel with the examine mouse key (DOUBLE-
CLICK-L), and the components within the submodel will appear. This action jumps the user down one
hierarchical layer into the next submodel layer.

An example of opening a submodel is shown, in Figure 144.

This submodel was opened by selecting the RIGD submodel icon as previously shown in Figure 143: Default
Submodel Icon with a CLICK-C. The description area defines this to be a submodel schematic with the
submodel name: "RIGD".

This submodel is defined with the three components shown in Figure 144.

Note: Opening a submodel with a CLICK-C only moves the user down one hierarchical layer. The
user can open any submodel from any hierarchical layer by selecting Open from the
Submodel menu. This feature is described in Submodels, "Opening and Closing a Submodel".

Reference Manual
Submodels

302
Figure 144 Example Submodel Schematic

The connections into and out of the submodel are shown with the filled-in half circles. The semi-circles show
how the submodel is connected to the model. Each semi-circle represents a component, and as such, is labeled
with the component name. Components may be added to this submodel and all Easy5 model building
features may be used. Additional submodels may also be created, spawning lower hierarchical levels.

Closing a submodel is performed by any one of the following three methods. The Close... (Ctrl+C) option
may be selected from the Submodel menu, or the accelerator keys Ctrl+C may be used. In addition, the Close
Submodel push button can be selected from the control panel. When the submodel is closed, Easy5
automatically moves the user up one hierarchical layer.

Submodel Labels
Semi-circles are used in the submodel schematic diagram to represent connections into/out-of the submodel.
These semi-circles are automatically labeled with the component name that the semi-circle represents. For
example in Figure 144, the semi-circle on the left border is labeled with the component name TZAC. This
shows that the connection into the submodel’s YUIV component is from the TZAC component that resides
outside this submodel.

303Chapter 1: Reference Manual Topics
Submodels
The output of the submodel in this example is represented by the semi-circle on the right-hand border. The
INP component output is connected to the semi-circles labeled as MTM, which shows that INP is connected
to the MTM component which resides outside the submodel.

You can turn the submodel label feature on or off by toggling the following menu

View > Hide Submodel Labels

Submodel Connection Lines
Submodel connection lines and connection nodes may be manually routed. Information on submodel
connections is given in “Moving Connection Line Endpoints”.

Editing Submodel Properties
The submodel name, descriptor and icon attributes may be modified. To edit a submodel’s attributes,
CLICK-RIGHT-HOLD on the particular submodel component in the model schematic, and select
Properties... from the Submodel Component Menu.

In the following example, the “Rigid Body Dynamics” submodel, component RIGD, will be selected using
the CLICK-RIGHT-HOLD (Submodel Component) menu. The “<name> Submodel Attributes” dialog will
pop up for the selected submodel. This dialog box is used to edit the name, description and the submodel
icon.

The submodel name is defined when the submodel is first created. The name may be changed by editing the
“Name” input field. The name is used to define the submodel, and is used when copying and deleting
submodels. This name also displays in the submodel’s schematic title.

The submodel descriptor is similar to the component descriptor, and is used to place a title over the submodel
icon. The default descriptor is “Submodel”, as shown in Figure 145.

Figure 145 Edited Submodel Descriptor

The descriptor may be changed by editing the “Description” input field.

In this example, the description is changed to “Rigid Body Dynamics.” The resulting submodel icon will
appear with the description above the icon as shown in Figure 145.

Reference Manual
Submodels

304
You are allowed to edit the default submodel icon by selecting the Edit Icon push button, which initiates the
Icon Editor. For instructions on using the icon editor, see the User Guide, Chapter 9 - Icon Editor. When finished
with the “Edit Submodel Attributes” dialog box, select “OK” to apply the changes.

Expanding a Submodel
A user can take a submodel that has been created, and “expand” this submodel back to its original
configuration. This is called “expanding” a submodel. This function expands the submodel and places the
components of the submodel back into the block diagram from which the submodel was created.

Expanding a submodel back to its original configuration is performed by selecting the Expand... option from
the Submodel menu, then selecting the submodel that is to be expanded. Alternatively, you can select the
submodel component to expand via a CLICK-RIGHT-HOLD, and select the Expand Submodel menu item
from the Submodel Component Menu. Easy5 will prompt the user with a dialog box to confirm that the
selection is correct. The submodel will be expanded and brought up one hierarchical level. The schematic
diagram should now appear as the original block diagram prior to building the submodel.

Navigating Submodels
Large models may contain many hierarchical layers of submodels. These layers may be connected across any
layer. For example, the output from a component on the top layer schematic may be input to a submodel that
is buried five layers deep; or an output from a submodel eight layers down can be connected to the input of
a submodel only one layer down. As a result, opening and closing submodels one layer at a time can become
cumbersome.

The most efficient way to display all submodels and jump to any submodel is to use the submodel explore
function. To do this, select Explore Model from the View menu (or the “Explore Model” edit toolbar icon),
and then select Submodels in the View: field to display a list of current submodels as shown in Figure 146.

Caution: Expanding a submodel completely eliminates the submodel from the schematic block
diagram. The submodel expansion cannot be undone. If, after expanding a submodel it is
needed, you will need to re-create that submodel.

305Chapter 1: Reference Manual Topics
Switch States
Figure 146 Example of Model Explorer Submodel Hierarchy

This list of all submodels first gives the submodel name followed by its description. The submodel level
currently displayed in the model schematic is also highlighted.

The Model Explorer can also be used to navigate among the various hierarchical submodel layers. Double
left-click the submodel name to open and view all the components and inputs and outputs in this submodel.
This feature lets you easily move in and out of the submodels without having to step through the hierarchical
layers, one at a time.

To locate a particular submodel, simply select it in the list, and the schematic will be navigated to show the
highlighted submodel component. This works in either direction. In this manner, the Model Explorer
window (or schematic window) can be used to track where you are in the model schematic at any point.

Switch States
See Also: "States"

"States: Defining Values and Controls"

"Editing Submodel Properties"

Switch states allow you to efficiently use any of Easy5's variable-step integrators to model systems containing
extremely discontinuous phenomena. In the past, discontinuous effects like hard limiting, coulomb/static
friction, and hysteresis could be only approximated in your model and integrated with fixed-step integrators.
The switch state facilitates simulation that is both more accurate and more efficient. For example, a model
containing a mechanical actuator with coulomb friction was converted to a switch-state model and integrated
in one-tenth the time previously required.

Several Easy5 components in the General Purpose Component Library that model common discontinuous
effects with switch states. A partial list of these includes the following:

 AC - Position and Rate Limited Lag
 IH - Integrator with Hard Limits
 IL - Position and Rate Limited Integrator
 I2 - Double Integrator, Acc- Rate- Pos Limited

Reference Manual
Switch States

306
 CF - Velocity of Object with Coulomb + Static Friction
 DB - Deadband (Bang-Bang) Controller
 F2 - Two Bodies with Friction
 HY - Hysteresis
 NZ - Deadzone

In addition, you may add switch states to your own User Code and Library components.

What Switch States Represent
In some cases, a switch state represents a simplified model of a device that toggles from one setting to another
and has some reluctance to switch back. A good example is a deadband controller like a thermostat. A furnace
thermostat turns on when the sensed temperature falls below the set-point temperature but does not turn off
again until the temperature is somewhat above the set point.

A second category of effects requires switch states to be modeled accurately. These effects use several sets of
equations, and the selection of the appropriate set is based on some condition in the model.

For example, there are situations in which the set of equations to be used in determining the derivative of a
continuous state depends on the value of that same state. The following are the equations for an integrator
with hard limits:

dx/dt = input if x is within limits or input has opposite sign of limit

dx/dt = 0 otherwise

A switch state can indicate which set of equations should be used to determine the derivative. The switch-
state value will be changed by the Easy5 integration algorithm when the algorithm has determined that the
equation set to be used should change. The integrators are told when to change by the executable, which sets
the rate of the switch state. The switch-state rate is the value the switch state should have during the next call
to the model.

The changing of equation sets based on the value of one or more states in the model is often described as a
“state-related event”. Notice the importance of changing equation sets at the correct instant: if you delay, x
will go beyond the limit. In this usage, the switch state represents a nonphysical quantity used to control some
logic in your model.

A third category of effects that can be modeling with switch state are discrete events that occur at irregular
but predetermined times. Switch states are used for these effects primarily to ensure that the Easy5 variable
step integration algorithms do not simply “jump over” these events as the integration algorithms moves ahead
in time in discrete steps. While such “timed events” can be modeled using normal switch states and logic
based on the Easy5 variable TIME, doing so is somewhat inefficient because the normal switch state
processing involves searching for the time of an event. To improve efficiency, Easy5 provides a special type of
switch state called “timed event switch states which are described later in this article.

307Chapter 1: Reference Manual Topics
Switch States
The Advantages of Switch States
Switch states are convenient and efficient for applications like deadband controllers, but are necessities for
models involving state related events. This is because Easy5 simulation uses numerical integration and is
subject to all the limitations thereof.

The most significant of these limitations is that numerical integration can only evaluate the model equations
at a finite number of instants of time among the infinite number that occur in any time interval. The solution
between those times is obtained by some form of interpolation and/or extrapolation.

To illustrate, consider the equations for the acceleration of an object subject to coulomb friction:

accel = 0 if velocity = 0 and external force < coulomb friction force Equation 1

Otherwise,

accel = [external force - coulomb force * sign(velocity)]/mass Equation 2

where sign(velocity) is +1 if velocity/ 0 and -1 if velocity <0.

Figure 147 shows the correct transient response of such an object under the initial condition that at time=0,
the velocity is .951.

Reference Manual
Switch States

308
Figure 147 Transient Response of Moving Object with Friction

In the above example, there is no external force, and the mass and coulomb friction force are unity. Note that
the object decelerates at a constant rate according to Equation 2 until the velocity is zero at time=.951. After
this, the velocity stays at zero under Equation 1.

Figure 148 :Effect of Euler Integration of Transient shows the effect of integrating this transient using the simple
Euler integration algorithm without a switch state.

Figure 148 Effect of Euler Integration of Transient

The Euler integration algorithm can be expressed as follows:

x(t+Δt) = x(t) + dx(t)/dt * Δt Equation 3

This can be written in terms of velocity and acceleration as:

vel(t+Δt) = vel(t) + accel(t) * Δt Equation 4

where Δt = .25.

Using Equation 4 and the fact that accel(t)=-1 as long as the velocity is positive, vel(.75)=.201. Repeating this
calculation for the next time step, accel(.75)=-1 since vel(.75)>0, so vel(1.0)=vel(.75)+(-1) * .25 = -.049. Note
that the equations were never evaluated at time=.951, which was the point at which a switch should have been
made to the other equation set.

To further complicate matters, continuing the integration another step gives accel(1.)=+1, since vel(1.)<0, so
vel (1.25)=vel(1.)+(+1) * .25 = .201. This is exactly vel(.75); hence the cycle repeats as shown. Notice that if
the fourth step had been of length Δt = .201, the integrator would have switched to Equation 1 and obtained
the correct solution.

Using the Euler algorithm, a microscopic step size Δt would have to be used to integrate this transient with
acceptable accuracy for an arbitrary initial condition. Unfortunately this difficulty cannot be avoided by
switching to a different integration algorithm. Variable step integration algorithms assume that the derivative

309Chapter 1: Reference Manual Topics
Switch States
equations can be written as continuous functions of the state variable. They require continuity because they
need to be able to probe back and forth in time to test and, if necessary, improve the accuracy of the solution.

In Figure 149, the acceleration of the coulomb friction example is plotted as a function of the velocity and is
clearly discontinuous.

Figure 149 Acceleration as a Function of Velocity for Coulomb Friction

The method Easy5 uses for integrating this type of problem can be summarized as follows:

1. Easy5 has the model set a flag, the switch state's rate, when a state related event has occurred.

2. The integration algorithm searches for the time t (within tolerance) when the event occurred.

3. The integration algorithm completes the abbreviated integration step up to just before, while
remembering which equation set to use after.

4. The integration algorithm tells the model to switch to the new equation set by setting the new state
value, and then takes a new step of length W.

5. The integration algorithm continues with the transient.

There are two observations to make about the previous technique.

 First, notice that in step 3 there is a need for some memory; the rate of the switch state is used for
this.

 Second, a transition step size needs to be specified; the ERROR CONTROL supplied with every
Easy5 state, but not needed for the usual functions of switch states, is used for this purpose. You
must set switch state ERROR CONTROLS on the basis of model requirements. A deadband
controller will probably operate with sufficient accuracy using the default error control of .001, but
other switch states will require a much tighter error control for accurate results.

Using Switch-State Standard Components
For the most part, you can ignore the fact that the component contains switch states. Switch states usually
are internal to the component and not connected to other components. They can be printed and plotted just
like any state or variable. Like all states, switch states are given a default initial value of zero. The initial value
may be set just like any state initial condition.

There following sections describe a few instances when switch states will need attention:

Reference Manual
Switch States

310
Poor Performance
If simulation results indicate that the switch state is not switching close enough to the correct time,
performance can be improved by decreasing the transition interval duration. This can be set by decreasing
the error-control value for the switch state.

Reducing the error control will usually increase run time, so you should use the largest value that gives
acceptable results. Contrary to other types of states, the default value of the error control for a switch state is
1.0E-6.

Freezing Switch States
For diagnostic or other reasons, you may wish to force a switch state to stay at its value. This can be done in
the component data table, by changing the state’s “Frozen” flag indicator form “No” to “Yes”.

When Switch States are Active
At the present time, switch states are only active during nonlinear simulation and steady-state analysis.
During other analyses, they are essentially frozen. This may change in future versions of Easy5.

Understanding the Rate of a Switch State
Since a switch state does not have a derivative, the “rate” of a switch state is used as “temporary memory” and
represents the next value of the switch state (the value it will have as soon as the integration algorithm is ready
to switch it). During an analysis, you can determine if the model would like to switch by checking whether
the state and rate values of each switch state match.

Using Switch States in User Code and Library Components
An Easy5 model generation command, SET SWITCH, allows User Code and Library components to contain
switch states. The syntax of this command is as follows:

SET SWITCH, switch state name = new value

where new value is the name of a User Code or Library Component variable whose value is the desired value
of the switch state. Notice that, like every other state variable, the model (the component equations) sets the
rate value of a switch state, but never the value of the switch state itself.

Example of Using Switch States
As an example of a switch state, consider modeling a deadband controller as a Fortran component that is
functionally equivalent to the Easy5 standard component DB. Before writing the code that uses switch state
logic, you should always develop a state transition diagram. These diagrams are ideal for laying out the logic
necessary to make switch states work. Once the state transition diagram is complete, it is a simple matter to
code the logic.

A state transition diagram for the deadband controller is shown in Figure 150.

311Chapter 1: Reference Manual Topics
Switch States
Figure 150 State Transition Diagram For A Deadband Controller

Figure 151 shows the code that would be used to code a deadband controller using a Fortran component that
is functionally equivalent to the Easy5 standard component DB.

Figure 151 Sample Fortran Code For A Deadband Controller

In this Fortran component, the inputs used are:

DBINPUT - the input signal

INP_ON - the value of the input DBINPUT at which the controller should turn on

INP_OFF - the value of the input DBINPUT at which the controller should turn off

OUT_ON - the value of the output signal when the controller is on

OUT_OFF - the value of the output signal when the controller is off

The outputs are:

DB_OUT - the output signal

SW - the controller switch state (0=off, 1=on)

**** Fortran Code of Dead-Band Controller Using Switch States
IF (SW .EQ. ZERO) THEN

DB_OUT= OUT_OFF
SWDOT= 0
DB_Current_Value= (DBINPUT -INP_ON) * (INP_ON -INP_OFF)
IF (DB_Current_Value .GT. ZERO) SWDOT=1

ELSE
DB_OUT= OUT_ON
SWDOT=1
DB_Current_Value= (DBINPUT -INP_OFF) * (INP_OFF -INP_ON)
IF (DB_Current_Value .GT. ZERO) SWDOT=0

ENDIF
*
SET SWITCH, SW =SWDOT

Reference Manual
Switch States

312
Note that the switch-state rate SWDOT is assigned a value on every pass through the code even if the setting
of the switch state is not changing. This is absolutely necessary for the integrator to accurately locate the time
at which the setting of a switch state should be changed.

Figure 152 shows an example of a non physical usage of a switch state. An integrator with hard limits is
modeled as in Easy5 component IH. The code for component IH seems complex (N=0 configuration shown
only). This complexity is introduced to avoid ambiguities in the switching logic.

Figure 152 Library Component Implementation of IH Component

Switching logic ambiguities occur when the logic switches back and forth between two values of a switch
state. These ambiguities are complicated by the fact that, even with switch states, we are still dealing with
numerical approximation. For example, using an IH component with a tight error control will result in
extremely close approximation to perfect limiting, but not exact limiting, of the continuous state S_Out.

A setting of 25.0 for the upper limit, with an error control of 1.0E-8, may indicate perfect limiting on the
printout, while internally the limit may actually be 25.000001. Suppose the Component IH had been built
using the following logic:

If SW = 0 and S_Out Š max, then next SW = 1

If SW = 1 and S_In < 0, then next SW = 0 (assume GKI=1)

This is identical to the IH logic except that the first condition is missing the requirement that S_In Š 0. Now
suppose that you have simulated the modified component to a point where SW=0 and S_Out is just slightly
larger than the maximum (say S_Out = max+1.0E-10).

The first condition will force the integration algorithm to change the state to 1. S_Out will stay limited until
the input turns negative. Suppose that S_In turns very slightly negative (say S_In=-1.0E-20). This is enough
to cause the integrator to switch back to SW=0. Each of these steps will be taken at a step size equal to the
switch-state error control. Since this is generally a very small number, you are effectively in an infinite loop.

BEGIN SORT BLOCK
 If (linear .and. lf_ih .NE. ZERO) Then
 s_LimOut_ih = s_out_ih
 If (incall .GT. 0) write(iwarn,+++10) '_IH'
+++10 Format(/5x,'*** NOTICE *** Component ',A,' is ignoring ',
 & 'its inherent nonlinear behavior for this analysis'/T24,
 & '(per user-request via non-zero parameter LF).'/)
 Else
 If (sw_ih .EQ. ZERO) Then
 s_LimOut_ih =
 & Max(Min(s_out_ih ,max_ih),min_ih)
 Else If (sw_ih .EQ. ONE) Then
 s_LimOut_ih = max_ih
 Else
 s_LimOut_ih = min_ih
 End If
 End If

313Chapter 1: Reference Manual Topics
Temporary Settings File
Timed Event Switch States
Discontinuous events which occur at irregular but predetermined times can be modeled most efficiently
using a special syntax which tells the Easy5 variable step integration algorithms to take an integration step
exactly up to the event time rather than stepping past the event and then performing a search for the event
time.

This special syntax is:

AT TIME = event_time, SET SWITCH, switch_state_name=new_value

Here event_time should be the name of a variable (either an output variable or a local variable) which has be
set to the value of the event time, switch_state_name is the name of the switch state, and new_value is the
value that the switch state should be set to when TIME = event_time.

For an example of a library component using switch states, examine the PT component of the Easy5 gp
library using the “Examine Component…” in the Library menu.

Perfect Limiting
Certain applications become physically inconsistent if the limits are exceeded even by an extremely small
amount. For this reason, an alternate output, S_LimOut, is provided for standard component IH, which
assumes exactly the limit value when a limit is reached. However, S_LimOut is a variable, and may result in
an implicit-loop problem in a model.

Additional Information on Switch States
Further information on switch states is given in the Easy5 Technical Notes - Switch States. This technical note
is provided as a PDF file in the Easy5 Guide. To view the file, select Help > Easy5 Guide > Technical Notes
> Switch States.

Temporary Settings File
There are two methods to change the parameter input data that characterizes your model. First, you may
directly modify the parameter values in the component data tables. This alters the parameters that
characterize the “nominal” model. A second method is to define a temporary settings file that contains a set
of special data that temporarily modifies the “nominal” parameter values. A temporary settings file is used for
this purpose. This is the preferred method since it does not destroy the nominal parameters defined in the
component’s data table. However, the temporary setting file data can be loaded back into the model.

The temporary settings file is an external file containing a data base of parameter values. This data base is
linked into the analysis data form by selecting the “Parameter Settings File” input field at the bottom of the
analysis forms. Prior to the execution of an analysis, these values are read in, and override the nominal
parameter values obtained from the component data tables.

Creating a New Temporary Settings File
First you need to create the temporary settings file. To do this, select File > Open Temporary Settings Editor.

Reference Manual
Temporary Settings File

314
Input a filename in the Settings field that uniquely defines your temporary settings file. For example, if you
are setting up a temporary settings file to alter the model to simulate a step input of 10 degrees, call the file
Step_input_15.

Figure 153 shows an example of an empty temporary settings editor. This editor is used to add and define
temporary settings files, including parameter and state names and values that make up the temporary settings
file.

To add a temporary settings name, you first need to select the “Add a model parameter, table, or
state from a pick list” toolbar icon. This automatically opens a Model Explorer window, which is
then used for all “picking” of model quantities.

Entering and Editing Data in the Temporary Settings Editor
The Model Explorer window is used to specify model names to your temporary settings file. Just like any
other “pickable” name, temporary settings parameters, tables, or states are selected in the same manner.

First, you need to select the “Add” button, as indicated by the red arrow in Figure 153. Then, if you select any
parameter, table, or state name in the Model Explorer window, that name and all associated data is auto-
matically copied into the temporary settings data table.

Note: This file may be created at any time. You do not need to edit an analysis data form to edit
both temporary settings and auxiliary input files. You can access these files by selecting File
from the main window menu bar.

315Chapter 1: Reference Manual Topics
Temporary Settings File
Figure 153 Temporary Settings Editor

Please note that the Model Explorer window indicates the current model value for all parameters and states.

Figure 154 shows an example of a temporary settings file automatically filled in with parameter inputs and state
conditions. To change any of the parameter values in the temporary settings data table, simply select the data
value field and enter a new value.

When a state is added to a temporary settings file, the “Frozen” and “Error” fields are set to the default of “No
Change”. In Figure 154, the state named S_out_DF has both the Frozen and Error fields set to “No Change”.

The “No Change” designation means that the user does not want to change the setting in the temporary
settings file, and instead, wishes to use the current model setting.

For example, if a state error control is set in the component data table as. 00005, then, this default value will
be used in the temporary settings file and will not be changed. This allows the user to update and modify the
values in the component data table, and have these values automatically applied to the temporary setting file.

Reference Manual
Temporary Settings File

316
Figure 154 New Temporary Settings File

You can change the “No Change” values by selecting them with the left mouse button. The Frozen field will
toggle between YES (to freeze the state), NO (to unfreeze the state), and “No Change”.

In Figure 154, the state named EneFail_FO has the Frozen flag changed to NO, and the ThrottleCut IC value
set to 70000. To change the Error field from “No Change” to a numeric value, just left-click the “No Change”
value and enter a numeric value.

To delete parameters and states from the temporary settings data table, select the appropriate name(s) in the
data table, and select the Delete icon from the toolbar. Easy5 will remove the selected quantities and all
associated data from the table.

To close the temporary settings editor select the small “x” in the upper corner. Once a temporary settings file
has been created, it can be edited, deleted, copied or renamed using the Temporary Settings Editor. Finally,
all changes applied in the Temporary Settings Editor have an undo/redo capability.

317Chapter 1: Reference Manual Topics
Temporary Settings File
Applying a Temporary Settings File to an Analysis
Having created the temporary settings file, you need to apply (add) this file to the analysis data form. This is
done in the analysis data form by selecting the Modifiers tab, followed by the Insert button, and selecting
“Temporary Settings File”. A new entry will be added, with a pulldown menu containing all available
temporary settings files will appear on your screen as shown in Figure 155.

Reference Manual
Termination Commands

318
Figure 155 Adding Temporary Settings to an Analysis as a Modifier

Select the appropriate file from this pull-down list, and Easy5 will automatically insert the name into the
analysis data form.

To delete a temporary settings file name from the data form, select the file name, and then select Remove.
Similarly, select Edit to open a specific temporary settings file.

An example of linking an analysis in a temporary settings file is also shown in Figure 155. This figure shows
the temporary setting file named Step_Input_15 linked to a specific simulation analysis. If you have more
than one temporary settings file that you want to use, select the next “Temporary settings file” input field and
follow the same procedure you used to enter the first file.

Loading Temporary Settings Data Into the Model
A Temporary Settings “file” is generally used to test different data settings and conditions when running
analyses. As such, it is ideal for parametric studies. However, once the data settings have been determined and
tested, you may want to load them back into the model. This can be done manually by opening every
component and typing in the data from the desired Temporary Setting File. Or, the data contained in a
Temporary Settings File can be loaded back into the model by selecting the “Update the model with the temp
settings data” toolbar icon in the Temp Settings Editor. This will load all the “temporary settings” data into
the model.

Termination Commands
See Also: "Stop and Exit Flags"

319Chapter 1: Reference Manual Topics
Termination Commands
Special commands can be used to execute code which is called at the end of an Easy5 analysis or when an
Easy5 analysis execution terminates (either normally or abnormally). This capability is provided for users who
have tasks they wish to be done “on the last valid call to the model”. This capability is more flexible than the
“last call” concept in the following ways:

1. If a simulation has become unstable and “blows up”, it is not generally possible to call the model
again.

2. There are times when the end simulation cannot be detected until it has happened so you would have
to make an extra complete call to the model to execute the termination code.

Termination Commands
The commands, BEGIN TERMINATION CODE and END TERMINATION CODE, delineate the termination
code. These termination commands are entered in Fortran and Library components, but are not available for
C components. The commands should be in pairs, and entered on separate lines before and after the
termination code. Because these are Easy5 commands, they are case insensitive, and can start in any character
field (that is, you can enter these commands in the first character field).

Termination Mode Flag
The integer*4 variable INDP is available within the termination code and has the following meaning:

1. INDP = 0 means Easy5 has completed everything and is terminating the run normally (this means
the termination code may be called more than once; e.g. when the analysis is over and when the run
is over).

2. INDP = INST means Easy5 has completed normally an analysis with type INST (e.g. situation has
a type code of INST = 26. See “Reserved Words” for other codes). Currently, termination code is only
implemented for simulation and steady-state analyses.

3. INDP = -INST means and error has occurred during an analysis of type INST and Easy5 is exiting.

Example
Suppose you are designing an Easy5 component which is computing variables x and y and you wish the final
values of those variables to be written out to a file named xyz at the end of a simulation even if that simulation
fails to complete. You could do this with the following code:

< Code to calculate x and y >
Begin Termination Code
If (INDP .EQ. 26) Then

Open(76, file = ’xyz’)
Write(76,’(2G20.13)’)’Successful simulation: ’ x, y
Close(76)

ELSE IF (INDP .EQ. -26) Then
Open(76, file = ’xyz’)

Note: The termination commands can only be entered in Fortran User-Code or Library
components. Currently, termination code is only implemented for simulation and steady-
state analyses.

Reference Manual
Text Editor

320
Write(76,’(2G20.13)’)’Simulation FAILED: ’ x, y
Close(76)

End If
End Termination Code

Text Editor
The Easy5 Text Editor, is a basic text editor offering the ability to view (and edit) output files generated by
Easy5. It also offers basic cut/copy/paste operations, search/replace, and goto a specific line number.

An example of the application window is shown below:

This is used to display the following types of Easy5-specific text files:

 Auxiliary input files
 Model generation listing
 Analysis output listing
 Log files

In addition, it is invoked via the File > Open Text Editor... menu item. Individualized settings are stored on
a per-user basis (i.e. font selections, etc.).

321Chapter 1: Reference Manual Topics
TIME - Testing on the Value of Time
User-Defined Text Editor
The Easy5 Text Editor is not designed as a “full-service” text editor, nor can it handle large files very well (i.e.
it loads the entire file into memory at once). Recognizing the potential need for using other text editors, and
knowing that users have their individual preferences, we allow users the ability to users the ability to use their
own text editor for such text files. This situation can occur if output files get very large. To offer an alternative
text editor for these situations, Easy5 offers the following approach using environment variables.

This is done via two environment variables:

EZ5_TEXT_EDITOR=<absolute path to text editor>

EZ5_USE_TEXT_EDITOR_SIZE_MB=<threshold size in MB of file>

For example, to specify use of the “gvim” editor for all cases, one could set the following (global) environment
variables (before invoking Easy5):

set EZ5_TEXT_EDITOR=c:\progra~1\vim\vim70\gvim.exe
set EZ5_USE_TEXT_EDITOR_SIZE_MB=0

Setting a value of 0 for the latter, means always use this text editor. Setting a value greater than 0 means, only
use the text editor when the file size is larger than that value (in MB).

TIME - Testing on the Value of Time
You may want to test on the value of TIME or an event in a conditional block in your model equations. In
most circumstances there is no problem in doing this. There are certain conditions. however, that you should
avoid. In general, while you can always extract data from your model, when setting values in your model you
must be very careful.

By intuition, time appears to flow continuously forward during a simulation. With numerical integration,
however, this is not so. In fact, time actually "jerks" forward in discrete steps, where the step size is governed
according to the method used. For variable step integration methods, time may "back up" as well.

If you want to test on TIME to generate additional printout or data, you should add a condition that tests if
the point in time is a "valid" call to the model. Otherwise, the call to the model may just be a "test" point
whose data would otherwise be discarded. Usually, you want the additional data generated to coincide with
other data generated during the simulation. If so, you will want to add a test on the variable ITINC. This
additional test is necessary for all integration methods except the first order Euler method. Even the second
order, fixed step Huen integration method makes two calls to your model for every value of TIME, which
might cause confusion. The suggested form for conditional tests (for generating additional data) on the
variable TIME (or some other event), where condition is the test, is as follows:

IF (TIME condition .AND. ITINC .EQ. 1) THEN
. . .
. . .
(conditional block of Fortran or Library component code)

Note: Use of a user-defined text editor does not apply to the Easy5 Code Editors (User-Code
components, or Library components). These always use the embedded code editor.

Reference Manual
Transfer Function Analysis

322
. . .

. . .
ENDIF

You must be careful that the conditional block does not set the values of any quantities of your model into
memory. If something is set into memory, it will use this value during the next call to your model equations.
If the next call to the model occurs at a value of time less than or equal to the last call, the saved value will
probably be invalid.

If you need to set a value into memory, you should use a switch state instead. The switch state should be used
to trigger the event that occurs at some time, tevent. Then, you simply test on the first call of your model,
for which the value of the switch state has been set. This is guaranteed to be a valid call to the model. This is
the most accurate method for determining the point in time when the event occurs. For example, consider a
model where you want to set some values at some point in time, say, during a rocket trajectory. You could use
the following form of code in a Fortran or Library component:

C
C ----- DETERMINE VALUE OF SWITCH STATE
C

IF(TIME.LT. tevent) THEN
 switch_state_rate = Voff
ELSE
 switch_state_rate = Von
ENDIF

SET SWITCH, switch_state = switch_state_rate
C
C ----- TEST ON VALUE OF SWITCH STATE TO SET VALUES IN MODEL
C

IF(switch_state .EQ. Von) THEN
. . . .
(set values here)
. . . .
ENDIF

In the previous example, tevent is the time at which the event occurs, and Voff, Von, are the values used for
the switch state, indicating whether the event has occurred or not.

Transfer Function Analysis
See also: "Transfer Function Analysis Methods"

"Transfer Function Troubleshooting"

Note: If you require better accuracy and are using the RUNGE KUTTA integrator, you can instead
test on the variable IERR equal to one. IERR is a flag that indicates that ERROR
CONTROLS were satisfied on a given time step, a so called “valid call”. This will, however,
not guarantee that time goes forward or that points in time coincide with other simulation
data.

323Chapter 1: Reference Manual Topics
Transfer Function Analysis
"Transfer Function of Sampled Data Systems"

Easy5 performs a frequency response analysis by calculating a transfer function between any two points in
your model. Transfer Function analysis can be performed on both continuous and/or sampled data models.
For systems containing both continuous and digital elements, a z-plane transfer function is calculated.

Transfer Function analysis in Easy5 consists of two parts. First, a linearization automatically occurs about the
defined operating point, followed by calculation of the poles, the zeros, and the leading coefficient of the
system. You only need to define the Transfer Function input and output in the Transfer Function Data Form
as explained in the following section.

The Transfer Function Data Form
All specifications for performing a Transfer Function analysis are defined with the Transfer Function Data
Form via mouse and keyboard inputs. To access this data form, select Analysis > Linear > Transfer
Function... from the main menu bar. Instructions for entering the required data are explained in the
following sections.

Figure 156 is an example of the transfer function data form with all options shown. To save the settings in this
data form, and to fill in the title, time and initial operating point data fields, refer to “Analysis Data Form”.

Specifying the Transfer Function Input
To define an input, select the respective data field, and enter the name of any parameter, state or variable in
your model. You can also define an input using the “Pick” method as discussed in “Model Explorer Window”.

There are special requirements that you must consider when using variables and states as Transfer Function
inputs. See “Transfer Function Troubleshooting” for more information.

Reference Manual
Transfer Function Analysis

324
Figure 156 Transfer Function Data Form

Specifying the Transfer Function Output
“TF Output” may be the name of any state or variable in your model. To enter an output name, select the
respective data field and enter the name. You can also define an output using the “Pick” method. See "Model
Explorer Window".

Requesting a Frequency Response Plot
If you want a frequency response plot as part of the Transfer Function analysis, select “Yes” following
“Frequency Response” on the transfer function data form. If you do this, additional data fields and options
will appear on the form. Use the additional fields and options to specify a frequency response plot type and
scaling information. The usage of “Plot Type”, “Scales” and “TF origin” is self explanatory.

325Chapter 1: Reference Manual Topics
Transfer Function Analysis
Scales
When automatic scales is selected, Easy5 automatically finds the maximum and minimum of all quantities
to be plotted. For the frequency axis, the minimum frequency is 1/10 of the lowest non zero frequency in the
model, and the maximum frequency is 10 times the highest frequency in the model.

If “Manual” scales are selected, then you must define two additional fields: “Freq Max:” and "Freq Min:".
These frequencies define the range of frequencies to be plotted. Enter the maximum and minimum
frequencies, in the units of radians/sec. If you enter “0” in any of these fields, Easy5 will use automatic scales.

For example, if you wished to use manual scales to define the minimum frequency to be 1 rad/sec, but not
define an upper frequency limit, then enter:

Freq Max: 0

Freq Min: 1.

TF Origin

The Transfer Function phase is always displayed with a total 360o. The “Tf Origin” defines the phase plot
scale midpoint value. By default this is set to -180o, which results in the Bode phase plot being displayed with
-180o as the midpoint, and therefore the scale is from 0o to -360o. You can set this TF Origin to any value.
For example, if you set this to -90o, the phase plot scale will be from +90o to -270o.

Transfer Function Analysis Output Data
Transfer Function analysis results can be in plotted and/or printed formats. These are described in the
following sections.

Transfer Function Analysis Plots
If frequency response plots were generated during your analysis, you can view them with the Easy5 online
plot program. To start the Easy5 Plotter, select Analysis > Plot Current Results (Ctrl+Shift+P). For more
information see the User Guide, Chapter 7 - Easy5 Plotter.

The Transfer Function Analysis Output Listing
After the transfer function analysis has completed, you may analyze the output by selecting Analysis >
Display Analysis Output Listing (Ctrl+Shift+L). Once you are looking at the Easy5 analysis output listing
file, search for the string "TRANSFER FUNCTION ANALYSIS" to position yourself at the top of the
transfer function output listing. Listed first are the “TF Input” and 'TF Output” selections as well as the title.
These are followed by information describing the operating point. Following the operating point information
is a printout showing the zeros, the leading coefficient, and the poles of the system. For a sampled data system
this would include both s-plane and z-plane results.

The frequency response is listed in tabular form and includes frequency (in rad/sec and Hz), gain (in both
magnitude and db), and phase (in degrees). For sampled data systems a column for the w-plane frequency
will also be included. Finally, the total amount of CPU seconds expended during the analysis is shown at the
bottom.

Reference Manual
Transfer Function Analysis Methods

326
Transfer Function Analysis Methods
See also: "Transfer Function Analysis"

"Transfer Function Troubleshooting"

"Transfer Function of Sampled Data Systems"

This section describes the theory used in calculating a transfer function used by the Transfer Function
analysis. It describes both the Frequency Response and Transfer Function methods, and shows the difference
between a continuous and sampled data system transfer function.

Frequency Response Method
A linearized model, described by your input, output, and nonlinear model, is calculated about the operating
point. The linearized model is represented by system poles, zeros, and a leading coefficient.

In effect, you replace your nonlinear model with a linear model accompanied by one input and one output,
as illustrated in Figure 157.

Figure 157 Linearized Model, Transfer Function Analysis

This linear model is used in the frequency response analysis discussed below.

Computationally, a frequency response analysis, as shown in Figure 158, involves injecting a sinuosity input
signal at a frequency, ω, an amplitude, Αin, and phase angle, Φin, and measuring a corresponding steady-
state output signal also having an amplitude, Aout, and phase angle, Φout.

The transfer function gain (or simply, Gain), G, and transfer function phase (or simply, Phase), Φ, are given
by:

transfer function gain: G=| Aout/Ain |

transfer function phase: Φ= Φout - Φin

Note: You should be very careful about extending the results of multirate discrete transfer functions
to situations other than simple gain connections between the transfer function output and
input.

327Chapter 1: Reference Manual Topics
Transfer Function Analysis Methods
Figure 158 Linearized Model, Transfer Function Analysis

A frequency response is created by calculating the gain and phase over a selected range of frequencies. For
convenience, the gain is expressed in both magnitude and decibels (dB). Units for frequency are in radians
per second (rad/sec) or Hertz (Hz), and units for phase are in degrees. The selection of frequency points can
be an important factor in the accuracy and resolution of the results, as described in the next section.

Selecting Frequency Points
Easy5 automatically selects frequency values for the frequency response to be evaluated; there is no need for
you to provide such values. The frequency point selection scheme is designed to minimize discontinuities and
provide you with a smooth and accurate “curve”. Thus, for systems with lightly damped poles, you are assured
of good resolution in such areas of rapidly changing frequency response.

The frequencies Easy5 selects will automatically span your system eigenvalues unless you limit the selection
range with manual frequency bounds. For sampled data systems, the upper frequency bound using automatic
scaling is the Nyquist frequency (of the fundamental sampling rate). Also, sophisticated search algorithms
find both the 0 dB gain crossover and the -180 degree crossover, which are critical stability reference points.

Transfer Function Analysis Method Selection
Depending on your type of model, either a continuous (s-plane) or a sampled data (z-plane) analysis will be
performed. Easy5 automatically selects the appropriate method for your model.

Continuous Systems
For linear systems, Easy5 creates a linear model of the form:

 = Ax + Bu + Kx

 y = Cx + Du + Ky

A = nxn system Jacobian (stability matrix); n= number of states

B = nxm system input (control) matrix; m= number of inputs

u = scalar system input vector

x = system state vector of n length

x·

Reference Manual
Transfer Function Analysis Methods

328
y = scalar system output vector

C = pxn system output matrix, where p = the number of outputs

D = pxm direct transmission gain matrix

Kx = constant rate vector

Ky = constant output vector

The linear model is formed by Easy5 about your operating point by perturbing your system states and the
system input (specified as TF INPUT).

The transfer function poles are the eigenvalues of your system Jacobian matrix, A. The zeros and lead
coefficient of the transfer function are calculated using the method of Patel. The zeros are obtained as the
eigenvalues of a matrix whose order equals the number of zeros. This matrix is determined from the A, B, C,
and D matrices and uses a series of coordinate transformations.

Having determined the n poles, Pi, the m zeros, Zi, and the lead coefficient, L, the transfer function can be
stated as:

If m equals zero, the numerator is equal to L.

Sampled Data Systems
For sample data systems, where the input and output are digital signals, the linearized model assumes the
form:

zxz = Azxz + BzUz

Yz = Czxz + DzUz

where the z subscripted quantities are the z-domain counterparts of the s-domain quantities. For multi-rate
systems, the z-domain sampling period used, called the fundamental sampling rate, is the slowest or least
common multiple of your system’s sampling periods. The Az matrix is called the system transition matrix,
and is calculated using the method described in Ap. C: Discrete Analysis Techniques.

Given these matrices, the Patel method is used to calculate the poles, zeros, and lead coefficient of the transfer
function.

Coordinate Transformation
All transfer function results for a sampled data system are calculated in the z-domain with a sample period
equal to the fundamental sampling period. System singularities, the poles and zeros, are given in both the z-
plane and the s-plane. The definition of z (z=eTs) is used to transform from the z-plane to the s-plane.

G s()
LΠ

i 1=
m

s Zi–()

Π
i 1=
n

s ZPi–()
---=

329Chapter 1: Reference Manual Topics
Transfer Function Troubleshooting
These s-plane singularities include both the poles and zeros of the transformed continuous plant and digital
compensation, and give a correct representation of the aliased plant dynamics. Compensation specified in the
s-plane (as is done with the DF and DL standard components), and transformed to the z-plane, may be
different from the original specification when transformed back to the s-plane. This change is due to
differences between the z-transform and the bilinear transform.

Frequency values on the unit circle in the z-plane are related to their corresponding values on the imaginary
axis in the s-plane by the relation:

z =

where:

Tmax = fundamental sample period, seconds

ω = frequency, rad/sec

z = z-plane complex variable

Transfer Function Troubleshooting
See Also: "Transfer Function Analysis"

"Transfer Function Analysis Methods"

"Transfer Function of Sampled Data Systems"

The Transfer Function analysis can fail for various reasons. There may be no connection between the specified
input and output. If this is the case, a warning is given, and you must correct this as explained in the next
section. Also, the “TF Input” can be the name of any state, variable, or parameter. However, two situations
must be avoided when specifying the input as discussed in the following two sections. For sampled data
systems, additional requirements exist.

No Connection Exists Between Tf Input and Tf Output
In order to run the Transfer Function Analysis, you must specify the TF INPUT and TF OUTPUT. If there
is no connection between the input and output, the analysis will fail and the following error message is
printed in the analysis output listing file:

NO CONNECTION EXISTS BETWEEN TF INPUT AND TF OUTPUT

An example of this condition is clearly shown in Figure 159.

w Tmax) j w Tmax)⋅(sin+⋅(cos

Caution: You should be very careful about extending the results of multi-rate, sampled data Transfer
Function analyses to situations other than simple gain connections between the TF
OUTPUT and TF INPUT.

Reference Manual
Transfer Function Troubleshooting

330
Figure 159 Example of Incorrect TF INPUT and TF OUTPUT

This simple model has the TF INPUT defined at point A, the output of Component XX. The TF OUTPUT
is defined at point B, the output of Component YY. It is obvious that there is no connection between these
two points. If you inject a signal at Point A, you will not be able to measure the result of this signal at point B.

If this were a closed loop system where the output of the summation were fed back into Component‘s XX
and YY, then a connection would exist between the input and output.

There is no way to solve this problem, it is physically constrained. However, if you can redefine either the
input or output, a transfer function can be solved. For example, define the TF OUTPUT at Point C, and
you will have a connection between the input and output.

A less obvious problem occurs when hard limits, switches, and switch states are used. Assume one or more of
the components is in the transfer function loop (between TF INPUT and TF OUTPUT). If the component
is at a hard limit, or the switch is opened, then the Transfer Function Analysis will fail and print the "NO
CONNECTION EXISTS BETWEEN TF INPUT AND TF OUTPUT" error message.

An example of such a system is shown in Figure 160. Assume that the output of the Summing Junction
component SJ is used as the TF INPUT, and the output of the Transfer Function component TF is the TF
OUTPUT. Note that the transfer function loop contains the Integrator with Hard Limits component (IH)
and the Switch component (SW), and that the IH component has hard limits at + 2.0.

331Chapter 1: Reference Manual Topics
Transfer Function Troubleshooting
Figure 160 Example of a Broken Transfer Function Connection

First assume that the output of IH is defined at the hard limit of 2.0. The Transfer Function Analysis will fail
with these conditions! This is because the sinusoidal input signal injected at the TF INPUT will not be seen
at the TF OUTPUT. The sine wave is "broken" by the hard limit of the IH component, and you will get the
error message: "NO CONNECTION EXISTS BETWEEN TF INPUT AND TF OUTPUT".

The transfer function loop will also be broken if the switch is opened such that it inputs the signal from the
GN component. This “breaks” the loop between the IH and the SW component and will result in the same
error message.

Variables as Transfer Function Inputs
When you use an Easy5 variable name as the TF INPUT, you must make sure that it is not used to calculate
other variables within the same standard component (or sort block) that are passed as outputs to other components.
Easy5 perturbs the TF INPUT by starting at the statement in SUBROUTINE EQMO just below the (sort
block) definition of the variable, and uses a perturbed value for the variable (which would otherwise be
calculated).

If other variables defined in the same component (or sort block) are a function of the TF INPUT, they will
not see any effect from the perturbation. This will result in an incorrect transfer function calculation if the
TF OUTPUT is connected to one of these "blind" output variables. If this is the case, you may see the
following error message is printed in the analysis output listing, even though it seems a connection should
have been found:

NO CONNECTION EXISTS BETWEEN TF INPUT AND TF OUTPUT

This problem is perhaps best illustrated by the example shown in Figure 161.

Reference Manual
Transfer Function Troubleshooting

332
Figure 161 Example of Incorrect TF INPUT as a Variable

Here, the TF INPUT is a variable, V1, and the TF OUTPUT a variable, V3. Both variables V1 and V2 are
calculated in component XX, where V2 is a function of V1. Variable V3 is defined in component YY as a
function of V2. Note that the variable V1 is perturbed not at location A but at location B in the block
diagram.

Point B represents the first statement following the (sort block) definition of variable V1 in SUBROUTINE
EQMO (remember, standard components are accessed as subroutine calls). Thus, no connection exists
between the TF INPUT and TF OUTPUT, and the transfer function cannot be calculated. In contrast, if
the variable V2 had been selected as the TF INPUT, there would have been no problem.

States as Transfer Function Inputs
Exactly the opposite situation should be avoided if the TF INPUT is set to a state name. Here, you should
ensure that no feedback of the state occurs within the component (or, if a sorted library component, within
the sort block) in which the input is defined. Otherwise, perturbations made to the TF INPUT, now made
internal to the component, will be fed back (inside the component or sort block) and will become a part of
the calculated transfer function. The resulting incorrect dynamic effects will be included in the calculated
transfer function.

The lag component LA is a good example of a component that contains internal feedback. The lag
component equation is:

d(S2)/dt=(Gain•S1 - S2)/Tau {where S1=input; S2=output (state)}

In this component, the derivative of the output S2 is a function of S2. That is, the derivative of the state is a
function of the state. This causes internal feedback. Many components have this relationship that results in
internal feedback. Figure 162 illustrates these effects.

333Chapter 1: Reference Manual Topics
Transfer Function Troubleshooting
Figure 162 Example of Incorrect TF INPUT as a State

Here, a component XX is connected to another component YY. The TF INPUT is the state S1 of the XX
component and the TF OUTPUT is the variable V1 of the YY component. Note that the state S1 is fed back
within the component XX. Contrary to the situation that occurs for variables as inputs, TF INPUT S1 is
perturbed at point A, not at point B. This is because it is a state variable.

Thus, the resulting transfer function is incorrect. Freezing the S1 state will rectify this situation.

In general, you will obtain better numerical accuracy if you freeze all model states not included in the
specified transfer function. If you do not freeze them, zeros will be calculated for the transfer function to
cancel the poles corresponding to the extraneous states.

If the previous example shown in Figure 162: Example of Incorrect TF INPUT as a State were a closed loop system
such that the TF Output were fed back to the input to Component XX, as shown below in Figure 163: Example
of a Transfer Function with Feedback, then setting the TF INPUT at point A, and freezing the “upstream” state
S1 would result in a broken loop.

Figure 163 Example of a Transfer Function with Feedback

This will open the loop and would give you incorrect results for a “closed loop” transfer function.

Note: As a general rule, always freeze the state variable used as a “TF Input”. Otherwise, signal paths
around the state will remain active, and will become a part of the calculated transfer function.

Reference Manual
Transfer Function of Sampled Data Systems

334
To avoid this, insert a gain block (GN) between components XX and YY, set the gain to “1.0”, get the TF
INPUT at point B, and do not freeze states in the loop. This is the easiest way to guarantee correct results
without having to worry about freezing states.

Transfer Function of Sampled Data Systems
See Also: "Transfer Function Analysis"

"Transfer Function Analysis Methods"

"Transfer Function Troubleshooting"

As mentioned in "Transfer Function Analysis Methods", a sampled data transfer function is calculated in the z-
domain by forming the discrete time linear model description of your system in the form:

xn+1= Axn + Bun

yn= Cxn + Dun

This form assumes that the input and output are only changing at the fundamental (or slowest) sample time!. If
this is not the case for your selection of TF INPUT and TF OUTPUT, the Transfer Function analysis will
be invalid and will not be calculated. If you add a sample and hold (SH) component at either the input or
the output, Easy5 will perform the requested calculation. You must judge the validity of this change to your
model, however.

This invalid condition often occurs when you are trying to perform a transfer function across a continuous
portion of a sampled data model. If this is the case, you must first “freeze” all digital states so that the analysis
reverts to a continuous time (s-plane) calculation. In other cases, you may find that by requesting a transfer
function between a different input and output you can avoid this problem. For an open loop, for instance,
you may wish to “break” the loop at a different point in your model.

The following sections describe how to break (or open) the loop of a sampled data system, to calculate the
stability margins, and also examines the problems associated with obtaining transfer functions of single rate
and multirate sampled data systems.

Stability Margins for Sampled Data Systems
The stability margins of a system can be calculated by applying the Nyquist Stability Criterion to an "open
loop" transfer function obtained by "breaking" a feedback path and taking the input and output points
respectively just after and just before the break. For continuous systems the breakpoint can be anywhere in
the feedback path.

However, for sampled data systems, since the Easy5 Transfer Function analysis computes a discrete system
transfer function (see Appendix C for details) and then computes the frequency response by setting z=ets,

335Chapter 1: Reference Manual Topics
Transfer Function of Sampled Data Systems
some configurations present problems. As an example, consider the system shown in Figure 164: Sample Multi
Rate Discrete System.

Figure 164 Sample Multi Rate Discrete System

This is a discrete system consisting of three delays in series. The first and third elements sample every.1 sec,
and output that value.1 sec later. The middle element samples every 0.2 sec and outputs that value 0.2 sec
later. Notice that an element interior to the system is sampling slower than either the input, u or the output,
y. This is referred to as an fast slow fast (FSF). To determine a discrete transfer function for this system
requires that we express the output y at each sample time in terms of the input u at the current and previous
sample times at y at previous sample times. But this cannot be done for this system. To see this, note that:

y(.5)= x2(.4)= x1(.2)= u(.1)

where y(.5) represents the value of y at time=.5, and so on.

This calculation would lead one to expect the transfer function should be:

y/u = z-4

But the calculation:

y(.6)= x2(.5)= x1(.2)= u(.1)

would lead one to believe that the transfer function should be:

y/u = z-5

Thus, no single input output relation (transfer function) exists.

This section describes a number of typical situations in which the discrete transfer function cannot be used
to compute stability margins and provides an alternate root locus based method which can be used in those
situations. We also suggest an approximate method which can be applied in many cases.

If we call components containing dynamics sampled at the fundamental rate "slow" components, and all
other components containing dynamics (those having continuous or discrete states) "fast" components the
requirements for calculating an Easy5 Transfer Function analysis for a sampled data system can perhaps be
better understood by studying the table below. This table shows the consequences for all types of
combinations of TF INPUT, TF OUTPUT, and dynamics occurring elsewhere in the model referred to as
"Internal" in the table.

Reference Manual
Transfer Function of Sampled Data Systems

336
To understand these limitations it is useful to examine what would happen if the Easy5 Transfer Function
analysis were allowed to proceed with the computation of the transfer function of a fast slow fast (FSF)
system. The first step in the discrete transfer function calculation is the generation of matrices A, B, C, and
D such that

xn+1= Axn + Bun

yn= Cxn + Dun

where: xn= state vector at the nth sample time (time= nτ)

un= input vector

yn= output vector

For a multi-rate system ‘t’ must be taken be taken as the "fundamental" (or slowest) sample period. This
representation implicitly assumes that u and y only change at (fundamental) sample times. But if we are
computing an open loop transfer function in order to find stability margins of the nominal "closed loop"
system, this format assumes that the feedback un=yn is changing only at fundamental sample times.

This is equivalent to adding a fundamental rate sampler at either the input or the output of the systems. Let
us call the original system plus this new sampler the augmented system. The augmented system is generally
less stable than the original system but there are cases when the stability margins of the original system are
greatly exaggerated by using the augmented system. In any case, the stability margins are almost always
wrong. For this reason we have not allowed the calculation to proceed.

Note that the validity of computing the transfer function of an FSF system concerns the passage of
information through the feedback path at times other than the fundamental sample times. This is not a
problem if there is a fundamental sample hold device at either the input or the output. Therefore, the
calculation is allowed to proceed for FSS and SSF systems.

There are situations in which combining transfer functions of FSS and SSF system can produce incorrect
results. Again, the problem is that the discrete transfer function formulation assumes that the system input
and output are only changing at fundamental sample times.

Suppose we have two systems, and SSF system S1 and a FSS systems S2. Let S1S2 be the system obtained by
connecting S1 and S2 in series. Then, in almost all cases, the discrete transfer function across S1S2 is not the
product of the discrete transfer function across S1 and the discrete transfer function across S2. For this reason,

TF INPUT Internal TF OUTPUT Result Type

Fast All fast Fast No message FFF

Slow All slow Slow No message SSS

Slow Mixed fast and slow Slow No message SFS

Slow Mixed fast and slow Fast Message SFF

Fast Any slow Fast Fatal error FSF

Fast Mixed fast and slow Slow Message FFS

337Chapter 1: Reference Manual Topics
Transfer Function of Sampled Data Systems
the discrete transfer function computation is allowed to proceed for FSS, FFS, SSF, and SFF systems but a
message is printed suggesting caution in the use of those results.

Single Rate Systems
A typical continuous model is shown in Figure 165.

Figure 165 Typical Continuous System Model

If the feedback loop is broken at point A and the TF INPUT A and TF OUTPUT are chosen as shown, this
configuration corresponds to a Fast Fast Fast (FFF) type and the desired margins will be obtained.

Now suppose the continuous controller is replaced with a digital controller, creating a sampled data system.
The same selection for TF INPUT and TF OUTPUT results in a FSF system and the transfer function
calculation will not be performed.

This is because both input and output are continuous signals, essentially being "sampled" at an infinitely high
rate, while the digital controller represents an embedded "slow" element.

If instead, the breakpoint were moved to point B, giving an SFF configuration as shown in Figure 166, the
transfer function calculation would be performed. Since the output is changing at a rate faster than the
fundamental rate, a contrary message will be printed.

Reference Manual
Transfer Function of Sampled Data Systems

338
Figure 166 Appropriate Break Point Selection for Sampled Data Model

Multi-Rate Systems
For multi-rate sampled data systems you must consider additional implications of your model topology. The
"loop sampling rate" is the rate at which the feedback signal is being sampled. Usually, in "real world" systems
sampling occurs within the digital filters as well as in each feedback signal just before it is fed back. For Easy5
models, however, usually a sampler is only located in the discrete component itself, prior to the zero order
hold, and the feedback sampler is omitted from the model (it can be included if you want though) as it
superfluous.

 A frequency response is calculated by perturbing the TF INPUT and observing the result at the TF
OUTPUT. Everything else in your model is considered to be "inside" the loop even if it does not actually lie
on a path between the TF INPUT and TF OUTPUT. In particular, all active samplers in your model other
than those associated with the loop being tested are considered to be "inside" the loop. This is the crux of the
problem for multi-rate systems because this may constitute an FSF type system. Easy5 will trigger a fatal error
if it detects this.

Therefore, two approaches are necessary for calculating stability margins for these types of systems. One
approach should be used for loops which contain no embedded slower samplers and another approach for
loops containing embedded slower samplers. These are discussed with the use of examples in the following
sections.

Approach for Loops Having no Embedded "Slow" Samplers.
Figure 167 shows a typical multi-rate sampled data model, having two loops: an outer position loop, having a
sampling rate equal to the fundamental rate (the "slow" loop); and an inner rate loop, having a sampling rate
faster than the fundamental rate (the "fast" loop). Note that a zero order hold (ZOH) is appended to each
Easy5 discrete component automatically.

339Chapter 1: Reference Manual Topics
Transfer Function of Sampled Data Systems
Figure 167 Typical Multi Rate Model

To calculate (SISO) stability margins for this system you can use the discrete transfer function approach only
for the outer (slow) loop. This loop is defined by specifying the TF INPUT at point A and the TF OUTPUT
at point B. The inner "fast" loop causes no problems because from the view of the outer loop the system is
time invariant. This transfer function calculation has an SFS type configuration. Because an Easy5 Transfer
Function analysis is valid for such loops, you can readily obtain gain and phase margins by examining the
frequency response data.

Approach for Loops Containing Embedded "Slow" Samplers
This technique requires a little bit of planning as minor changes to your model as necessary. A separate
method is required for calculating a gain margin and for calculating a phase margin for a particular loop where
the loop contains an embedded slower sampler.

This would occur if you wanted to calculate a transfer function calculation between A' and B' to obtain
stability margins for the inner rate loop. Unfortunately, you cannot do this because the resulting transfer
function calculation "contains" an embedded "slow" sampler, due to the slow sampler in the outer loop.

Figure 168 shows how the transfer function model actually looks with TF INPUT at A' and TF OUTPUT at
B'. This is an FSF type system and is not allowed.

You can prove that the slow sampler is "inside" the fast loop by imagining that you could freeze (deactivate)
the slow sampler. If it were not inside the fast loop, it would not affect the transfer function calculation, but
in fact it does.

Reference Manual
Transfer Function of Sampled Data Systems

340
Figure 168 Resulting Invalid Transfer Function Between Points A’ and B’

While Easy5's Transfer Function analysis cannot be used for these types of configurations there is another
approach to calculating stability margins for these systems. This approach, using Easy5's Root Locus Analysis,
is described in the following section.

Root Locus Analysis Technique
To calculate a gain margin add an MA Easy5 standard component in the feedback loop of the fast inner loop,
as indicated in Figure 169.

Figure 169 Multi Rate System Showing Placement of MA, PD Components in Inner Loop

Parameter values for this component should be set as follows: C1_MA to 1, and C2_MA to 0. Then request
a Root Locus analysis with the RL PARAMETER = C1_MA. The gain margin is then determined from the
smallest value of C1_MA, converted to units of dB, at which a system pole crosses the imaginary (jω) axis.

341Chapter 1: Reference Manual Topics
User-Defined Names
Phase margins are calculated in a similar manner. However, here the addition of a PD standard component
(Pure Time Delay - mth order Pade Approximation) is required as shown in Figure 169. Then, again, with the
outer (slow) loop "broken", a Root Locus analysis should be performed on the time delay parameter,
DEL_PD, of the PD component. The PD component, uses an mth-order Pade approximation to represent
a pure time delay. Higher values of n increase accuracy, but also increase the complexity and execution time
of your model.

The phase margin is then calculated as follows:

1. Obtain the value of DEL_PD, Δ, at which a system pole crosses the imaginary (jω) axis.

2. Find the natural frequency, ωn, of the pole at this point.

3. Multiply ωn by Δ to get the phase margin in radians.

4. Convert radians to degrees by multiplying by 180/Π.

A Useful Approximation
The Root Locus analysis method described in the previous section yields accurate stability margin results, but
requires making more than one Easy5 execution and a number of alternations to the model. In many systems
the stability margins are determined by modes whose natural frequencies lie far below the Nyquist frequency
of the fundamental samplers.

Adding a fundamental rate sample and hold in a fast loop of such a system will have little effect on the stability
margins. Results obtained by using this approximation should be used with caution however. Final results
should be validated using the root locus method or by performing nonlinear simulation.

User-Defined Names
Standard components contain Easy5 defined “default” names for the parameter inputs, output states and
output variables. The default names follow a strict naming convention. The full names are restricted to 60
alphanumeric characters, and some input/output names use special characters and port numbers.

This default naming convention is described in detail in “Component Input/Output Naming Convention” in the
section on Components. This default naming convention is a useful feature that saves you time. You do not
have to define every input/output name, it insures that all Easy5 names are unique, and the naming
convention is used to perform automatic data connections between components

However, the default names may be renamed by the user to a user-defined name. User-defined names do not
conform to the default naming convention, and the uniqueness of the names must therefore be maintained
by the user. This section describes the methods used to define user-defined names, and how to use these
names.

Note: Fortran and C code component input and output names are always defined by the user, and
are also considered to be user-defined names.

Reference Manual
User-Defined Names

342
Defining User-defined Names
The component input/output names are renamed in the component data table. You can assign your own user-
defined name to all component inputs and outputs. User-defined names “substitute” the Easy5 default names.
Names can be renamed at anytime. The user-defined name automatically gets applied to every occurrence of
the name in the model and data forms.

To change a name, just select the name and type in your own name, using up to 60alphanumeric characters.
An example of a component data table with user-defined names is shown in Figure 170: User-Defined Name.

Figure 170 User-Defined Name

Use the following guidelines when defining user-defined names:

 Use mnemonic names (names that have meaning)
 Use up to 60 alphanumeric characters; however, very long names do not display well in the data

tables and when printing and plotting out data. It is recommended that you define user define
names with 20 characters or less characters.

 Do not use blank spaces; instead, use underscores
 Always start with an alpha character
 User-defined names are not case sensitive; that is, Pitch_cmd is the same as Pitch_CMD

The name you define in the component data table is automatically applied throughout the model and all data
forms. The new name gets applied to connections, and is used in the executable source file.

Once a name has been user-defined, you may need to know the original Easy5 default name. To do this, hover
over the user-defined name with your selector -- the original default name will appear in a “hover box” along
with the user-defined name.

343Chapter 1: Reference Manual Topics
User-Defined Names
A user-defined name can be changed back to the original Easy5 default name by selecting the user-defined
name, and deleting the name. Deleting a user-defined name automatically inserts the default name.

User-defined Name Menu Options
The View menu contains the Show User-Defined Names toggle button box. When this button is selected
"on", the user-defined names are shown throughout the model. By default, this toggle button is on. If you
wish to only show the Easy5 default names, check this button off. The Easy5 default names will be shown in
all the data forms. This option can be checked on or off without effecting the model. In general, you want
this option on at all times, but you may wish to temporarily check this option off to quickly view the Easy5
default names.

Resolving User-Defined Name Conflicts
When components are copied, the two character component identifier is automatically changed, thereby
avoiding duplicate component input/output names. However, if the component contains user-defined
names, when copied, the user-defined names must be changed to avoid a naming conflict. Easy5
automatically corrects such naming conflicts, but allows you to choose alternate names using a "Resolve
User-Defined Name Conflict(s)" dialog window.

Figure 171 shows an example of such a dialog. The left side contains a table of names, with columns as
“Existing Name”, “New Name”, “Component”, and “Default Nmae”. As this dialog is popped up, Easy5 has
already resolved all conflicting names by automatically renaming them as shown.

Caution: Changing an input/output name alters the model. Therefore, you must always rebuild the
executable model any time you change a name!

Reference Manual
User-Defined Names

344

Figure 171 Resolve User-Defined Name Conflict(s) Dialog

You can offer alternate names by selectively selecting individual names (by row), and operations from the
right-hand side (labeled “Name Change Options”). To apply a given operation to the selected names, use the
Apply button. Continue to do this until you are satisfied with the list of names under the column “New
Names” and select the Close button. A Select All button is provided to select all names in the table.

Changing User-Defined Names
You can change the user-defined names in one or more components by using the Edit > Change Names menu
option. First select one or more components by drawing a selection box around the components. Then, select
the Edit > Change Names menu item, or use the Ctrl+W keyboard shortcut. A window displays allowing
you to change one or more of the user-defined names. An alternate method is, of course, to open each
individual component, one at a time, and change the user-defined names. However, this method is much
easier.

User Code component input and outputs output names are always defined by the user, and are also
considered to be user-defined names. An example of a Change Names dialog resulting from selecting two
components, one a User Code component, the other containing some user-defined names, is shown in
Figure 172.

Let us look at the Name Change Options for this example.

Automatically select new names: selecting this option will force Easy5 to automatically rename the user-
defined names that appear in the window.

345Chapter 1: Reference Manual Topics
References
Prepend <name> to existing names: Selecting this option prepends the prefix entered in the "Prefix" data
field to all selected names.

Append Suffix to existing names: Selecting this option appends the suffix entered in the "Suffix" data field
to all selected names.

Replace <name> with <name> in existing names: performs a replacement operation on selected names.

Remove user-defined names (revert to default names): removes user-defined names for selected names,
reverting them to their default Easy5 names.

Figure 172 Change Names Dialog Example

References
The following references are referred to in this manual.

1. Patel, R.V., Sunswat V., and Fallside, F.; "A Method for Computing the Zeros of Transfer Functions
in Linear Systems", Int. J. Systems Science Vol 8, No. 3, 1977

2. Athans F. and Falb, P.; Optimal Control, McGraw-Hill, 1966

3. O'Donnel, J.J.; "Asymptotic Solution of the Matrix Ricatti Equation of Optimal Control",
Proceedings from the 4th Annual Allerton Conference on Circuit and System Theory, pp. 577-586,
1966

4. Meditch, J.S.; Stochastic Optimal Linear Estimation and Control, McGraw-Hill, 1969

5. Potter, J.E.; "Matrix Quadratic Solutions", SIAM Journal on Applied Math, Vol 14, No. 3, pp. 496-
501, May 1966

Reference Manual
References

346
6. Kalman, R.E., and Bertram, J.E.; "A Unified Approach to the Theory of Sampling Systems", Journal
of Franklin Institute, p. 405, May 1959

7. Forsythe, Malcolm, and Moler; Computer Methods for Mathematical Computations, PrenticeHall,
New Jersey 1977

8. Wilkinsons, J.H.; "The Algebraic Eigenvalue Problem"

9. Wilkinson, J.H., and Reinsch, C.; Handbook for Automatic Computation, Volume II: Linear
Algebra, SpringerVerlag, Heidelberg 1971

10. Smith, B.T., et al.; Matrix Eigensystem Routines - EISPACK Guide, 2nd Edition, SpringerVerlag,
Heidelberg 1976.

11. Gaed, J., Redish, K.A., and Brebner, M.A.; "Calculation of Eigenvalues of Real Matrices by the QR
Method using Double QR Steps", Computer Journal, Volume II, pp. 112-115, 1968

12. Osborne, E.E.; "On Preconditioning of Matrices", J.A.C.M., Volume 7, pp. 338345, 1960

13. Gear, C.W.; Numerical Initial Value Problems in Ordinary Differential Equations, PrenticeHall,
1971

14. Doyle, J.C. and Stein, G.;"Multivariable feedback design concepts for a classical/modern synthesis",
IEEE Transactions on Automatic Control, Vol. AC-26, Feb 1981

15. Dongarra, J.J. et al.; LINPACK User's Guide, SIAM, Philadelphia, 1979

Suggested Reading
16. Anderson, B.D.O., and Moore, J.B.; Linear Optimal Control, PrenticeHall, New Jersey 1971

17. Kuo, B.C.; Digital Control Systems, Saunders College, 2nd edition, 1992.

18. D'azzo, J.J. and Houpis, C.H.; Linear Control System Analysis and Design, McGraw-Hill, 1988.

19. Franklin, G.F., Powell, J.D. and Workman, W.L.; Digital Control of Dynamic Systems, Addison-
Wesley, 2nd edition, 1990.

20. Bower, J.L. and Shultheiss, P.M.; Introduction to the Design of Servo Mechanisms, Chapter 10,
John-Wiley & Sons, New York, 1958.

21. Franklin, G.F., Powell, J.D. and Emami-Naeini, A..; Feedback Control of Dynamic Systems,
Addison-Wesley, 2nd edition, 1991.

22. Kuo, B.C.; Automatic Control Systems, Prentice Hall, 6th edition, 1991.

23. Shearer, J. L. and Kulakowski, B. T.; Dynamic Modeling and Control of Engineering Systems,
Macmillan Publishing Company, 1990.

Appendix. A: Summary of Analysis Commands
MSC Nastran Implicit Nonlinear (SOL 600) User’s GuideReference Manual

A Summary of Analysis
Commands

 Overview 348

 Data Input Commands 348

 State Control Commands 348

 Operating Point Commands 349

 Eigenvalue Sensitivity Analysis 350

 Function Scan Analysis Commands 350

 Linear Model Analysis Commands 350

 Root Locus Analysis Commands 351

 Simulation Analysis Commands 352

 Stability Margin Analysis Commands 353

 Steady-State Analysis Commands 353

 Transfer Function Analysis 354

 Print Commands 355

Reference Manual
Overview

348
Overview
This appendix summarizes the Easy5 language used to setup analyses. When you fill out any analysis data
form using the graphical user interface, and launches the analysis, a special Easy5 analysis command file is
created, and is referred to as the "anl" file. The file is named with the .ezanl extension as:
model_name.analysis_name.ezanl. This file contains the analysis commands that are summarized in this
appendix.

You will seldom need to "manually" create this file since it is done via the Easy5 graphical-user-interface.
However, these analysis commands may be put into an auxiliary input file and used to modify an analysis.
The auxiliary input file is most commonly used to input external data, as summarized in the first section
"Data Input Commands".

This appendix contains only a brief summary of all commands used for loading model data, establishing
operating points, executing analyses, and specifying plots. A complete description of analysis commands is
published as an Easy5 Technical Note. This technical note is provided as a PDF file in the Easy5 Guide. To
view the file, select Help > Easy5 Guide > Technical Notes > Analysis Commands.

Data Input Commands
You load numeric values into the system model using the following command:

PARAMETER VALUES, parameter=value, parameter=value,... (Default=0.99999)

INITIAL CONDITIONS, state=value, state=value,... (Default=0.0)

INITIAL VALUES, variable=value, variable=value

Expressions containing parameter or state names, delimited by { }, also can be incorporated to PARAMETER
VALUES and INITIAL CONDITIONS statements. See the Auxiliary Input File Data Format section for
additional details.

For loading external auxiliary input data:

AUX INPUT = $label

To have your model calculate initial conditions:

CALC XIC

To signal that a “multiple analysis” is being executed, use the command:

MULT_ANAL

State Control Commands
To specifiy values for error controls:

ERROR CONTROLS, state_name = value(Default=0.001)

Note: For clarity, some of the commands are used more than once in a particular section. Square
brackets indicate optional entries.

349Appendix. A: Summary of Analysis Commands
Operating Point Commands
MULT INT ERROR BY, factor only affects continous states

MULT SW ERROR BY, factor only affects switch states

MULT ERROR BY, factor affects all states

To "freeze" or activate specific states:

INT CONTROLS, state_name = integer_value (0:frozen)

 (1:active=Default)

ALL STATES (All states active)

NO STATES (No states active)

To control the step size used by the Gear integration algorithm during its

Jacobian calculations:

GEAR PERTURBATION = value (Default=0)

A value of zero means use the new method. To use the old method, use a value of 1. Any other value will use
the old method, but adjust by that factor.

Operating Point Commands

To specify the value of time:

INITIAL TIME = time (Default=0.0)

To update and transfer operating points:

XIC-X (Store state vector in XIC)
XIC1-XIC (Store initial condition vector in XIC1)
XIC2-XIC (Store initial condition vector in XIC2)

XIC-XIC1 (Retrieve XIC1 as initial condition vector)
XIC-XIC2 (Retrieve XIC2 as initial condition vector)

To save the current operating point:

SAVE XIC (Save initial condition vector to an external file)
IC SAVEFILE=<file name> (Names the external operating point file to filename)

Reference Manual
Eigenvalue Sensitivity Analysis

350
Eigenvalue Sensitivity Analysis

To perform an Eigenvalue Sensitivity analysis:

EIGEN PARAMETER = parameter_name

EIGEN SENSITIVITY

Function Scan Analysis Commands

DEPEN = dependent_var_name
INDEP1 = independent_var_name

START1 = starting_value (Default=-1.)
STOP1 = final_value (Default=1.)

SCAN1

To perform a two-dimensional function scan:

DEPEN = dependent_var_name
INDEP1 = first_independent_var_name

START1 = starting_value_for_INDEP1 (Default=-1.)
STOP1 = final_value_for_INDEP1 (Default=1.)

INDEP2 = second_independent_var_name

START2 = starting_value_for_INDEP2 (Default=-1.)
DELTA2 = increment_for_INDEP2 (Default=0.)
CURVES2 = number_of_curves (Default=1)

SCAN2

Linear Model Analysis Commands

For a simplified-form linear model:

LINEAR MODEL

For a partial or full-form linear model:

INPUTS = input_names

OUTPUTS = output_names

LINEAR MODEL

351Appendix. A: Summary of Analysis Commands
Root Locus Analysis Commands
To calculate the eigenvectors (the columns of which constitute the modal matrix), you must specify the
following command in your Model Description file:

THREE WORK ARRAYS

For reduced-order linear models (which require calculation of the eigenvectors):

INPUTS = input_names

OUTPUTS = output_names

MODEL ORDER = order

REMOVE MODEL MODES = mode1,...

REAL = mode,...

COMPLEX = mode1,mode2

LINEAR MODEL

To save linear model output data:

LM SAVEFILE=<file name> (Names the linear model output file to file name)

LM EV FLAG=<n> (Eigenvalue/Eigenvector calculation flag, where n is:
0 = Eigenvalues & Eigenvectors 1=Eigenvalues

2=Neither)

Root Locus Analysis Commands

To perform a Root Locus Analysis:

RL PARAMETER = root_locus_ parameter_name

RL START = start_value (Default=0.)
RL STOP = stop_value (Default=1.)
RL POINTS = integer_value (Default=6)

ROOT LOCUS

To calculate root locus zeros as well:

RL PARAMETER = root_locus_ parameter_name

RL INPUT = input_name

RL OUTPUT = output_name

Reference Manual
Simulation Analysis Commands

352
RL START = start_value (Default=0.)
RL STOP = stop_value (Default=1.)
RL POINTS = integer_value (Default=6)

ROOT LOCUS

To specify formatting of root locus data:

RL AUTO SCALES (Default)
RL MANUAL SCALES
REAL MIN = min_value (Default=-10.)
REAL MAX = max_value (Default=0.)
IMAG MIN = min_value (Default=0.)
IMAG MAX = max_value (Default=10.)
S PLANE (Default)
Z PLANE

Simulation Analysis Commands
An optional command used to specify a particular “runid”:

RUN IDENTIFIER = name

Before requesting a simulation to be executed you must specify the following:

TMAX = max_simulated_time (Default=1.)
TINC = value (Default=1.)
INT MODE = integration_mode (Default=1 or BCS GEAR)
INITIAL TIME = time (Default=0.)

To specify the simulation output data:

OUTRATE = plot_rate_multiplier (Default=1)
PRATE = print_rate_multiplier (Default=1)
PRINT CONTROL = integer_value (Default=3)
PRINT VARIABLES = variable(s)
SI AUTO SCALES (Default)
SI MANUAL SCALES (w XRANGE, YRANGE commands)

To control activation of interactive simulation (IS) widgets:

DEACTIVATE IS = value ((0: all, 1:TI only, or 2:none)

To specify what the plots will look like:

DISPLAY[i],[OVERPLOT,]yname,[VS,xname][,XRANGE=min,max,YRANGE=min,max]

 where: i=1,2,3,...,2000 (Default xname is TIME)

To specify secondary print or plot rates:

353Appendix. A: Summary of Analysis Commands
Stability Margin Analysis Commands
PRINT2 FROM,t1,TO,t2 (Default: t1,t2=1035)
OUTRATE2 = secondary_ plot_rate_multiplier (Default=OUTRATE)
PRATE2 = secondary_ print_rate_multiplier (Default-PRATE)
PRINT2 = integer_value (Default=PRINT CONTROL)
TINC2 = secondary_time_increment_value (Default-TINC)

To specify how switch state transitions are plotted:

PLOT EVENT = 0 (No data saved at switch state transitions)
PLOT EVENT = 1 (Data saved at all switch state transitions)
PLOT EVENT = 2,begin,TO,end (Data saved only for begin < time < end)

To execute a Simulation analysis:

SIMULATE

To update the current operating point with the end point from a simulation analysis:

XIC-X

Stability Margin Analysis Commands

To perform a Stability Margin analysis:

SM PARAMETERS = parameter(s)

STABILITY MARGINS

Steady-State Analysis Commands

To perform a Steady-State analysis:

SS ITERATIONS = max_number_of_iterations (Default=100)

STEADY STATE

To update the current operating point with the results from a SteadyState analysis:

XIC-X

To perform a Steady-State Scan analysis:

SS PARAMETER = parameter _ name

SS START = starting_value (Default=-1.)
SS STOP = final_value (Default=1.)
SS POINTS = number_of_ points (Default=5)
SS ITERATIONS = max_number_of_iterations_ per_scan (Default=30)
STEADY STATE

Reference Manual
Transfer Function Analysis

354
To specify scaling modes:

SS AUTO SCALES (Default)
SS MANUAL SCALES (w XRANGE, YRANGE commands)

To specify Steady-State Scan analysis plots:

DISPLAY[i],[OVERPLOT,]yname,[VS,xname][,XRANGE=min,max,YRANGE=min,max]

where: i=1,2,3,...,2000 (Default xname = SS PARAMETER)

Transfer Function Analysis

To perform a Transfer Function analysis:

TF INPUT = input

TF OUTPUT = output

To specify scaling:

TF AUTO SCALES (Default)
TF MANUAL SCALES (w FREQ MIN, FREQ MAX commands)

FREQ MIN = min_freq

FREQ MAX = max_freq

To specify plot format:

BODE (Default)

NICHOLS

NYQUIST

Plot Commands

To specify plot generation:

PLOT ON [SINGLE | DOUBLE] (Default = DOUBLE)
PLOT OFF (Default)

PRINTER PLOTS

CSV PLOTS

ESA PLOTS

355Appendix. A: Summary of Analysis Commands
Print Commands
Plots are generated using double-precision data by default. To generate single precision data, use PLOT ON
SINGLE.

To specify use of symbols during plotting:

OMIT PLOT POINTS

PLOT POINTS

To specify plotting of tabular data:

PLOT ALL TABLES

PLOT TABLES = table_name(s)

To specify simulation or steady-state scan displays:

DISPLAY[i],[OVERPLOT,]yname,[VS,xname][,XRANGE=min,max,YRANGE=min,max]

where: i=1,2,3,...,2000 (Default xname = TIME (SIMULATION)

SS PARAMETER" (STEADY STATE))

Print Commands

To specify print generation, first set the print control flag:

PRINT CONTROL = value

where: value =

0 None
1 All states, rates, and time
2 All states, rates, variables, and time
3 All states, rates, variables, and time (and parameters at time = 0) (Default)
4 All states, rates, variables, and parameters
5 Time and the quantities specified via PRINT VARIABLES command (see below.)
6 All states, rates, variables, and parameters at each STEADY STATE iteration
7 All states, rates, variables, parameters, and system Jacobian matrix at each STEADY STATE
iteration
8 User-furnished PRINT STATEMENTS

To specify which variables get printed:

PRINT VARIABLES = name1, name2, name3, ..., name40

Note: XRANGE, YRANGE commands require use of the SI MANUAL SCALES (or SS
MANUAL SCALES for STEADY STATE) command.

Reference Manual
Print Commands

356
To generate a printout of current values:

PRINT

Appendix. B: Guide to Numerical Integration
MSC Nastran Implicit Nonlinear (SOL 600) User’s GuideReference Manual

B Guide to Numerical
Integration

 Overview 358

 Numerical Stability 358

 Accuracy and Error Control 361

 Integration Method Selection Guidelines 364

Reference Manual
Overview

358
Overview
Easy5 provides several different numerical integration methods. These integrators are listed below, where
INT MODE is the Easy5 analysis command name assigned to the integrator.

 BCS-Gear (default integrator): an improved version of Stiff Gear (INT MODE=1)
 Runge-Kutta: a fourth order, variable-step Runge-Kutta class method (INT MODE=2)
 Huen: a second order fixed-step implicit method (INT MODE=3)
 Euler: a first order fixed-step explicit method (INT MODE=4)
 Adams: an automatic step-size/order-selection method, using AdamsBashforth predictor/Adams-

Moulton corrector pairs - 2nd through 12th order (non stiff option of Gear)
(INT MODE=5)

 Stiff Gear: an improved version of Gear's original method (INT MODE=6)
 Radau54: variable step three stage fifth order implicit Runge Kutta used to solve implicit models

(INT MODE=7)

Fixed-Step Runge-Kutta: fixed-step fourth order method (INT MODE=8)

Several integration methods are provided, as no single method is appropriate for the wide range of
differential-equation characteristics that are encountered in dynamic analysis models. The choice of the best
integration method depends on a number of considerations.

User requirements for accuracy, resolution and duration of transients, and model characteristics, such as
natural frequencies, discontinuities, disturbances, and sampling, all must be considered. Many excellent texts
exist on the numerical integration of ordinary differential equations. This appendix helps the user in selecting
the integration options provided by Easy5.

The following two sections provide some background on the problems of numerical stability, accuracy, and
error control. These sections discuss the topics from the view of how they apply to the integration options
available in Easy5. The third section provides some general guidelines to the selection of an integration option
based on the user's requirements and the characteristics of the model. The last section describes the linear
simulation option in greater detail.

Numerical Stability
The numerical integration of the equations of motion for a dynamic system is a discrete dynamic process.
The numerical integration process has the potential of being unstable regardless of the true behavior of the
system being modeled. A necessary condition for a satisfactory simulation of a dynamic system is that the
numerical integration process be stable.

However, just as with control system design, several other conditions must be met for a satisfactory dynamic
response. These other conditions are discussed in the following sections: Accuracy and Error Control and
Integration Method Selection Guidelines.

Note: In some cases an equation reference number (e.g., Equation B-1) appears in parentheses
along the right margin, next to the equation. This reference number is cited in text when it
is necessary for the reader to refer back to an equation for additional insight.

359Appendix. B: Guide to Numerical Integration
Numerical Stability
All of the integration methods available in Easy5 are "conditionally stable." That is, if the integration step
size, h, is made small enough, each method will produce stable approximations to the true solution. In
practice, the step size, h, required by some of the methods for stability may be so small that a very large
number of model evaluations are required to calculate a transient response.

The stability of numerical integration methods can be conveniently analyzed for most dynamic systems, by
considering a linear approximation of the model. If the model is approximated by the linear equation:

 = λX (B-1)

where λ is the eigenvalue of the model, the stability of the various integration methods can be related to the
product of the step size and the system eigenvalue, hλ.

Figure 1 shows the stable regions in the hl plane for the fixed-step size integration methods available in Easy5.
For real eigenvalues, the stability limits of the two fixed-step integration methods are the same.

For complex eigenvalues, the second order Huen method is stable for slightly larger step sizes than the first
order Euler method. For very lightly damped systems with eigenvalues near the imaginary axis, either
integration method requires very small values of h to maintain stability.

Figure 1 Stability Regions (Fixed-Step Methods)

A demonstration of the effect of step size is shown in the following figure, Figure 2.

x·

Reference Manual
Numerical Stability

360
Figure 2 Comparison of Euler and Huen Integrator Response

In this case, the response of a second order linear system to a step of amplitude 10 is calculated with each of
the fixed-step integration methods for different step sizes.

The system transfer function is:

which has eigenvalues at -1 + j. Step sizes, h, of .1, .5, and 1 are used.

These result in points A, B, and C in the stability regions. At a step size of .1, both Euler and Huen methods
provide a reasonably accurate solution.

2
s + 2s + 22

T(s)=

361Appendix. B: Guide to Numerical Integration
Accuracy and Error Control
At a step size of .5, which is well within the stability region of each method, the Euler result has departed
considerably from the correct solution and the Huen method has a slight error. With a step size of 1, the Euler
method is on the stability boundary and produces an oscillating result, while the Huen method is accurate
only in its final value.

Figure 3 shows the stable regions for two of the variable-step integration methods in Easy5. The stability
regions for fixed orders are shown for both methods, although the Stiff Gear method automatically varies the
order as well as the step size.

Figure 3 Stability Regions (Variable Step Methods)

The significant difference between the stability regions of these methods and the fixed-step methods is the
enlargement of the stable region, especially near the imaginary axis. However, the fact that the time step, h,
of these methods automatically adjusts to maintain a specified accuracy is of much more practical
significance.

The system eigenvalues of many practical problems change as the system states vary. With a fixed-step
integration method, the step size must be selected to keep the highest value of the system eigenvalues well
within the stability region. The small step size required to accomplish this must be used for the entire
transient. This small step size holds true even though the highest eigenvalues may occur only for a brief
period, such as when some limit or other nonlinearity is encountered in the model.

The fixed-step integration methods are used when the required resolution of model features, such as
sampling, forces the use of very small time steps. If the time steps are small enough to place the product of
the step size and the model's eigenvalues well within the stability region of a fixed-step method, then the
fixed-step methods will usually require the least amount of computer time.

Accuracy and Error Control
The step size demonstration shown in Figure 3 illustrates that fixed step integrators with a step size well within
their stability region may produce stable results that are rather poor approximations of the correct solution.

Reference Manual
Accuracy and Error Control

362
For some models, the step size required for acceptable accuracy can be orders of magnitude less than that
required for stability. The problem of selecting a fixed-step size can be avoided by using one of the variable-
step size integration methods available in Easy5.The step sizes for these methods are selected by the
integration algorithm as the integration proceeds.

The step size is selected to meet a given error criterion and maintain numerical stability. These "adaptive"
methods estimate the local truncation error at each step of the integration, accept or reject the approximation,
and predict the next step size to be tried. Local truncation error can be loosely thought of as the error incurred
during one step of the integration process, given that all previous approximations are exact. The order of a
method is a crude measure of accuracy. A method is said to be of order p if it is exact for pth order
polynomials.

The adaptive Easy5 integrators (BCS-Gear, Runge-Kutta, Adams, and Stiff Gear) strive to keep the step size
small enough to insure reasonable local error, which in turn should produce a small global error. Whether or
not the global error is small depends both on the model and the stability of the method.

The adaptive integrators measure the local truncation error by comparing two estimates of the solution that
theoretically differ only in high order terms from the Taylor's expansion of the solution over the current step.
The details of how this is done in each method are not important here, except as to how it relates to the Easy5
integration controls. The array, ERROR(I), is a measure of significance of the corresponding Ith state of the
system. To be precise, ERROR(I) is a value below which the Ith state is in some sense considered negligible
by the BCS-Gear, Runge Kutta, Adams, and Stiff Gear integrators. There are two techniques of error control
employed by these four integration methods. Runge-Kutta is described first. The error control in BCS-Gear,
Adams, and Stiff Gear is basically the same and will be discussed second.

In Runge-Kutta the initial step size, H0, is chosen as a function of TINC.

H0=.01 * TINC (B-2)

Subsequent step sizes are selected on the basis of local error-control estimates. There are a number of
refinements in Runge-Kutta that will not be discussed.

The basic error control is governed by the following quantity, Q:

where LTE(I) is the local truncation error estimate for the Ith state of the solution as calculated by comparing
a 4th order solution to a 5th order solution, X(I) is a recent history size measure of the Ith state (initially set
to the initial value), and ERROR(I) is the user input error control. The integrator strives to make Q = 1. If
Q < 1, the step size on the next integration step is increased. If Q > 10, the current step is rejected and a new
smaller step size is calculated for another attempt. To interpret the effect of the input error controls,
ERROR(I), set Q = 1 (the desired value for Q) in (B-3) and solve for LTE(J) for the maximal choice of I.
That is, for some I, if Q=1, then

Q = (I)
MAX []LTE (I)

ERROR (I) + X(I) *ERROR(I)
(B-3)

363Appendix. B: Guide to Numerical Integration
Accuracy and Error Control
i.e., the LTE is close to the ERROR + X*ERROR. If X(I) has been small, ERROR(I) dominates the right
hand side of (B-4), and the error control is essentially absolute error. On the other hand, if X(I) is very large,
X(I)*ERROR(I) will dominate, and thus relative error is controlled. If the solution gets large, then
log10(ERROR) will roughly give the number of significant digits of accuracy (locally).

The use of error control differs for the BCS-Gear, Adams, and Stiff Gear integrators. A local truncation error,
LTE, is computed by the integrator. The Euclidean error is controlled, i.e.,

is required to be less than (EPS)2 where N is the number of states, XMAX(I) is the maximum of the Ith
component of X over the course of the integration. The user impacts this control by effecting the initialization
of XMAX(I) and the choice of EPS. EPS is chosen as follows:

with the constraint that EPS£.01. If ERROR(I)<1.E-12 for all I, then EPS is set to 1.E-4. The initialization
of XMAX(I) is given by

XMAX(I) = ERROR(I) /EPS (B-5)

IF (XMAX(I).EQ.0) XMAX(I) = 1.

The net effect of this initialization for the EPS and the XMAX array result in the ERROR array being used
in a manner similar to its use in Runge-Kutta. For example, if EPS = .001 and ERROR = .001, then XMAX
= 1.0 and error control is essentially absolute error until the solution X(I) exceeds 1. If X(I) grows, the error
processing will gradually become relative error since XMAX is set equal to X whenever X exceeds it. If the
solution grows to a maximum value, and then decays, the error control will be relative to that maximum. The
user must remember that EPS is set by the smallest ERROR(I).

Thus, in a two-component system, if ERROR(1) = .001 and ERROR(2) = 1.0, the resulting controls will be
as follows:

EPS=.001; XMAX(1)=1; XMAX(2)=100.(B-6)

If X(1) = X(2) = 0 initially, the integrator considers values less than 0.001 negligible for X(1) and values less
than 1.0 negligible for X(2). This is quite similar to what Runge-Kutta would do with these same inputs for
ERROR(1) and ERROR(2).

To summarize, when using any of the variable-step size integration methods, the user should provide
reasonable values of error controls for each state in the system model. The default values of.001 provided by
Easy5 may be much too large or much too small, depending on the units of measure used in the system
model.

LTE (I) = ERROR (I)+⏐X (I) ⏐ ∗ ERROR (I) (B-4)
–

Σ
N

I = 1

LTE

XMAX (I)[] (B-5)

(I)
2

MIN

(I) (ERROR (I)) (B-6)

Reference Manual
Integration Method Selection Guidelines

364
Too small an error control, especially for states that represent accelerations or other higher order derivatives,
may result in excessive computer time. Too large an error control may result in inaccurate and unstable
results. For state values much greater than one, the ERROR values control the relative error in the results. For
state variables much less than one, the ERROR values control the absolute error.

Integration Method Selection Guidelines
In Easy5, the effect of integrator step size and integration method can be quickly evaluated. This is done by
repeating a typical simulation run with different integration methods, error controls, or step sizes. Such an
evaluation should be made before expending a large amount of computer time on simulation studies of an
unfamiliar model. Easy5 provides the BCS-Gear method, as a default. This method was chosen since it is very
good with stiff systems, and since stiff systems are quite common in the areas to which Easy5 has been
applied.

It is good practice to use the linearized analysis capabilities of Easy5 to investigate model stability and
characteristics before attempting simulation.

The following are some general integration method selection guidelines:

1. If no special knowledge is available about the system, try the variable step Runge-Kutta method. This
method usually performs quite adequately on a broad range of problems. However, it will probably
be worthwhile to consider switching to another method when more is known about the system, since
Runge-Kutta is by no means the most efficient method.

2. If a large amount of output is desired with small time increments, the Adams or Stiff Gear methods
should be considered. These methods use interpolation rather than generating smaller time steps
when output points are smaller than current step sizes. However, these methods are adversely affected
by discontinuities such as sampling, nonlinearities in the model, or external disturbances to the
model.

3. If the model involves discrete dynamic elements (sampled data), small time steps will be required for
the entire duration of the run. In these circumstances, it's more cost-effective to use one of the fixed-
step methods because they require less computing per step. However, with these methods, the user
must specify the size of the time step increment (TINC) and is responsible for insuring that the
integration algorithm remains stable.

4. If the model contains non differentiable nonlinearities (e.g., coulomb friction, deadband, etc.) not
implemented using switch states, the Runge-Kutta method is recommended. With the Runge Kutta
integrator, care should be taken if a large number of output data points at small time increments is
desired. If the method is forced to reduce the step size in order to accommodate the data
requirements, it could become significantly more costly than a fixed-step method.

5. If the problem is stiff (i.e., there is a large spread in eigenvalues where the high frequency eigenvalues
are well damped), either BCS-Gear or Stiff Gear is recommended. Both of these methods employ the
same basic algorithm. However, BCS-Gear makes use of state-of-the-art numerical techniques which
increase its efficiency.

6. If the system has high frequency eigenvalues that are lightly damped (i.e., flexible modes), then the
Adams method is recommended.

365Appendix. B: Guide to Numerical Integration
Integration Method Selection Guidelines
7. If the system is defined as an implicit model, then you must select the Radau54 integration method,
and prior to building the executable model, you must turn on the implicit solver by selecting: Build
> Solve Implicit Loops. For complete information on implicit modeling, see the User’s Guide,
Chapter 13: Implicit Modeling

It should be noted, however, that problems with large eigenvalues (with negative real parts) do not
automatically indicate that one should use Stiff Gear. For example, consider the following system:

This is an uncoupled system (and might seem artificial), but coupled systems often display the behavior of
rapidly damping components such as X2. If one was integrating this model and the important variable was
X1 and TMAX was large, then a large step size could be used provided the numerical integration of X2 was
damping to zero (i.e. stable). In such a case, the Stiff Gear method would be appropriate. On the other hand,
if TMAX was small (e.g., TMAX = 0.0001) and X2 was the component of interest (where relative accuracy
is important), then an efficient integrator such as Adams, or perhaps Runge-Kutta, would be appropriate.
Thus, the decision to use Stiff Gear depends on both the user requirements for accuracy and the eigenvalues
of the system.

X
•

1=-X 1

2X
•

2=-1000X
for time 0 ≤ t ≤ TMAX (B-7)

Reference Manual
Integration Method Selection Guidelines

366

Appendix. C: Discrete Analysis Techniques
MSC Nastran Implicit Nonlinear (SOL 600) User’s GuideReference Manual

C Discrete Analysis
Techniques

 Overview 368

 Linear Sampled-Data System Equations 368

 Discrete System Transition Matrix 371

 Total Transition Matrix for a Single-Rate System 372

 A Single-Rate Example 374

 Total Transition Matrix for a Multi-Rate System 376

Reference Manual
Overview

368
Overview
Easy5 can perform nonlinear simulation and linear analyses on sampled data systems containing up to ten
integer-related sampling rates. The linear sampled-data analysis options are based on the state-space approach
described by Kalman and Bertram. This approach requires the non-linear model be linearized and then
transformed into the following discrete state space form:

xi+1 = Azxi + Bzui

yi = Cz xi + Dzui

where:

x i+1 = the vector of the continuous and delay state values at the ith slowest sample time

ui = the vector of inputs at the ith slowest sample time

yi = the vector of outputs of the ith slowest sample

Az, Bz, Cz and Dz = discrete stability, input, output and feed through matrices

The method of calculation of the Az, Bz, Cz, and Dz matrices is the subject of this appendix.

Linear Sampled-Data System Equations
A discrete system may be described by the following three types of states:

 Continuous states
 Delay states
 Sample-and-hold states

Figure 1: Examples of Continuous, Delay, and Sample States shows an example of each state type

State Type . . . Are Defined By . . . State Value is Set . . .

Continuous states First-order ordinary differential equations
and vary continuously as a function of
time.

N/A

Delay states First order difference equations, which are
evaluated only at appropriate sample
times. Between sample times the values of
these states are constant.

Equal to the result of the difference
equation evaluation after a delay of
one sample period.

Sample-and-hold states First order difference equations, which are
evaluated only at appropriate sample
times. Between sample times the values of
these states are constant.

Equal to the result of the difference
equation evaluation as soon as its
made.

369Appendix. C: Discrete Analysis Techniques
Linear Sampled-Data System Equations
Figure 1 Examples of Continuous, Delay, and Sample States

The Kalman-Bertram method of analysis requires that the sampled-data system be "transitioned" over one
"fundamental" (slowest) sample period. This is done by transitioning the continuous part of the model
between sample times and transitioning the discrete part of the model across sample times. The continuous
system transitioning is accomplished by a closed form integration of the linearized differential equations. The
discrete system transition across a sample time is determined by the difference equations governing the delay
and sample-hold states.

In order to guarantee this separation of the continuous and discrete transitions, Easy5 requires that a sample-
hold state be inserted between delay states and continuous states. These "output" hold states are used to form
the discrete system output equations.

The final total system transition matrix is the coefficient matrix for the set of linear equations which defines
the values of all states just after a fundamental rate sample time in terms of the states just after the previous
fundamental rate sample time. Since all samplers are assumed to sample at a fundamental sample time, the
values of all states just after a fundamental sample time can be expressed completely in terms of the
continuous states and the delay states.

Reference Manual
Linear Sampled-Data System Equations

370
Thus the sample-hold state rows and columns can be eliminated from the final transition equations. The
discrete stability of the system is completely determined by the continuous and delay state transition
equations.

Let the continuous, delay, and sample-and-hold states be grouped together as three state vectors:

xc = nc vector of continuous state values

xd = nd vector of delay state values

xs = ns vector of sample and hold state values

The total system state vector of dimension nc + nd + ns is formed into the single partitioned vector:

The changes that occur between sample times affect only the continuous states. During this time, the
derivatives of the delay states, sample-hold states and inputs are zero and the system differential equations can
be written:

 = Accxc +0 xd + Acs xs + Bcu (Equation C-1)

 = 0

 = 0

u• = 0

If we define an augmented state vector by:

then we can write (C-1) as the matrix equation:

where:

x

xc

xd

xs

=

x·c

x·d

x· s

xt

xc

xd

xs

u

= (Equation C-2)

x·t Atxt= (Equation C-3)

371Appendix. C: Discrete Analysis Techniques
Discrete System Transition Matrix
The solution of (C-3) is:

xt (t
-
n) = eAtτo xt (t

+
n-1)

where:

xt (t
+
n-1) = the augmented state vector values just after the (n-1)st sample time

xt (t
-
n) = the augmented state vector values just before the nth sample time

τo = tn - tn-1 = time between successive samples

If Φ = eAtto, then the structure of At implies that Φ has the form:

Numerical Calculation of Continuous-System Transition Matrix
The matrix exponential Φ is calculated using the 3rd order Padé approximation:

Since powers of At have the same block structure as At only the blocks of Φ corresponding to non-zero blocks
of At are computed.

Discrete System Transition Matrix
At sampling instants, the system behavior is described by a system of 1st-order difference equations. Since the
continuous states and the inputs are unaffected by the sampling, these equations may be written in matrix
form as:

xt(τ+) = Txt(τ-)

At

Acc 0 Acs Bc

0 0 0 0

0 0 0 0

0 0 0 0

= (Equation C-4)

e
Att0=

e
Accτo 0 Ecs Eu

0 I 0 0

0 0 I 0

0 0 0 I

(Equation C-5)

Φ e
Atτo I

τo

2
-----At–

τ2
o

10
-------A

2
t

τ3
o

120
---------A

3
t–+

1–

I
τo

2
-----At

τ2
o

10
-------A

2
t

τ3
o

120
---------A

3
t+ + +•≈=

(Equation C-6)

Reference Manual
Total Transition Matrix for a Single-Rate System

372
where:

x(τ+) = the augmented state vector after the sample

T = the transition matrix

xt(τ-) = the augmented state vector before the sample

The matrix T will have the following block structure:

The elements of T are calculated by perturbing each state or input and forming the quotient of the change
in rates to the size of perturbation.

Note that at the initial sampling time, all samplers sample; this implies that the state values after the sample
can all be written in terms of the continuous states, delay states and inputs. Thus, for the initial sample-time
transition matrix, the blocks Tds and Tss are zero.

Total Transition Matrix for a Single-Rate System
For a single-rate system, to transition the system through a complete cycle requires that we transition through
a sample and then transition the continuous part up to the next sample time. This transition is expressed in
matrix form as:

The Discrete Linear-Model Matrices for a Single-Rate System
If we set:

I 0 0 0

Tdc Tdd Tds Tdu

Tsc Tsd Tss Tsu

0 0 0 I

T = (Equation C-7)

e
Accτo 0 Ecs Eu

0 I 0 0

0 0 I 0

0 0 0 I

I 0 0 0

Tdc Tdd 0 Tdu

Tsc Tsd 0 Tsu

0 0 0 I

•=ψ = ΦTo

e
Accτo EcsTsc+ EcsTsd 0 EcsTsu Eu+

Tdc Tdd 0 Tdu

Tsc Tsd 0 Tsu

0 0 0 I

= (Equation C-8)

373Appendix. C: Discrete Analysis Techniques
Total Transition Matrix for a Single-Rate System
then we have

where

xn = vector of continuous and delay state values at the nth sample time

un = vector of input values at the nth sample time

Kxn = vector of bias values for xn of operating point (x0, u0)

The discrete output and feed through matrices are obtained by perturbing each state or input and forming
the quotient of the change in each output by the amount of the perturbation. The resulting linear system has
the form:

yn = Ccx cn + Cd xdn + Cs xsn + Duun+ Kyn (Equation C-12)

We can eliminate the sample-hold state term Csxs from this equation by obtaining an expression for xsn from
the third row of blocks in (C-8) as:

xsn = Tscxcn + Tsd xdn + Tsuun

Substituting this in (C-12) gives:

yn = (Cc + CsTsc) xcn + (Cd + CsTsd) xdn + (Du + CsTsu) un (Equation C-13)

Thus the final form of the output and feed forward matrices is:

Cz = [Cc + CsTsc Cd + CsTsd] (Equation C-14)

Dz = Du + CsTsu (Equation C-15)

Kyn = vector of bias values for yn at operating point (x0, u0)

Az
e

Accτo EcsTsc+ EcsTsd

Tdc Tdd

= (Equation C-9)

Bz
EcsTsu Eu+

Tdu

= (Equation C-10)

xn Azxn 1– Bzun+ Kxn+= (Equation C-11)

xk

xc t
n–()

xd t
n–()

=

Reference Manual
A Single-Rate Example

374
The matrices Az, Bz, Cz and Dz, given by C-9, C-10, C-14 and C-15, form the desired linear- model
representation. See the section, "Continuous Systems", for a more complete description of Kxn (Kx) and Kyn
(Ky) vectors.

A Single-Rate Example
A simple single-rate sampled-data system is shown in Figure 2.

Figure 2 Single Sampling Rate Example

The discrete portion of this system approximates the continuous transfer function:

The continuous-system stability matrix for this system is:

The continuous-system transition matrix for this system is:

s+2
s+5 (Equation C-16)

A
10– 0 10

0 0 0

0 0 0

= B
0

0

0

= (Equation C-17)

375Appendix. C: Discrete Analysis Techniques
A Single-Rate Example
The discrete-system transition matrix for this system is:

A complete cycle of this system occurs after one sample period as shown in Figure 3. The system transition is
given by:

x(.01-) = ψx(0) = φTx(0) (Equation C-20)

Figure 3 Pictorial representation of
Single Sampling-Rate Transition Matrices

The output equation is:

y = x1

Thus, the final linear-model representation is:

Φ e
0.01A

0.904837 0 0.0951625 0

0 1 0 0

0 0 1 0

0 0 0 1

= = (Equation C-18)

T

1.0 0 0 0

0.02857 0.95121 0 0.02857–

0.98553– 1.0 0 0.98553

0 0 0 1

= (Equation C-19)

Reference Manual
Total Transition Matrix for a Multi-Rate System

376
Total Transition Matrix for a Multi-Rate System
Suppose we have a sample-data system with k + 1 different sample periods τo, τ1,... τk,

where τi/τi-1 = mi is an integer for i = 1, ...,k.

Moreover, we assume that all the samplers in the system take their initial sample at time = 0.

A typical situation is shown in Figure 4 with τo = .01, τ1 = .04 and τ2 = .08.

If φ is the matrix which transitions the continuous part of the system between consecutive τo samples, Τi is
the matrix which transitions the discrete part of the system at a sample time which is a multiple of ti (but not
a multiple of τi+1), and we call Ei the matrix which transitions the total system between successive τi sample
times, then:

Eo = φ

Ej = (Ej-1 Tj-1)mj-1 Ej-1 j = 1,...,k

So the total system-transition matrix over one complete cycle is:

ψ = Ek Tk

(Equation C-21)

(Equation C-22)

x1n+1
x2n+1

x1n
x2n = .8111 .09516

.02857 .95121
+ .0937855 un

un
x1n
x2n + 01.0 0 yn =

-.02857

377Appendix. C: Discrete Analysis Techniques
Total Transition Matrix for a Multi-Rate System
The linear-model matrices are derived from the total system-transition matrix and output equation exactly as
in the single-rate case.

Figure 4 Pictorial Representation of Multi-Sampling-Rate
Transition Matrices - Integer Multiple Rates

Reference Manual
Total Transition Matrix for a Multi-Rate System

378

Appendix. D: Batch Mode Commands
MSC Nastran Implicit Nonlinear (SOL 600) User’s GuideReference Manual

D Batch Mode Commands

 Overview 380

 External Variables 382

 Command Definitions 385

 Python Multiprocessing 385

 Black Box (BBX) Export and Analysis 388

Reference Manual
Overview

380
Overview
Easy5 is generally run using the graphical interface to build models and to setup and execute analyses. In
addition, you can also launch batch jobs by entering commands at a command prompt. In Windows systems,
the command can be entered in any command shell (Easy5 Command Shell or Easy5 Korn Shell).

This section contains a summary of the batch mode commands to run Easy5 as a batch job, plus several
examples.

Before running Easy5 in the batch mode, you must have two files:

 model file (model_name.ezmod), also referred to as the "mod" file
 analysis file (model_name.ezanl), also referred to as the "anl" file

The mod file defines the model in the Easy5 language and is created each time you select "Create Executable"
in Easy5. You must first build the graphical model within Easy5, then create the executable model.

The anl file is the analysis input file defined in the Easy5 language, and is created each time you setup and
execute an analysis.

To create this file:

Setup and execute an analysis from within Easy5.

OR

Manually create this file using the commands given in Appendix A.

Batch Mode Command
Batch jobs are submitted by entering the "easy5x -B" command at a command prompt. The command has
the following format:

$ easy5x -B[root_name|options][model_file|options][analysis_file]

(Position 1) (Position 2) (Position 3)

The command is followed by one or more arguments, entered in up to three different "positions". A summary
of the position arguments is given in the following tables.

Note: We recommend you use the Easy5 program to setup and run an analysis to create this file,
and then kill the job.

Note: Batch mode on-line help is accessed by entering the following command: easy5x -
help_batch

381Appendix. D: Batch Mode Commands
Overview
Examples of Batch Commands
1. To create a model executable only, using model file named my_model.mod, enter:

easy5x -B run1 my_model.ezmod

This will create an executable file named: run1.exe. If you want the executable file to have the same
core name as the model name, then use the model name as the root name as follows:

easy5x -B my_model my_model.ezmod

Argument Purpose

root_name Base name for all Easy5 output files (.ezmgl, .f, .exe, .ezapl, etc.)

-help On-line help.

-def Displays the settings of all Easy5 internal variables

-vars Displays the settings of all Easy5 external variables

-version Displays the current version of the Easy5 engine

-home Displays the home directory path for Easy5 engine

Argument Purpose

model_file Full name of model input file (model_name.mod)

+[exeid] Easy5 bypasses model generation and goes directly to analysis execution. File root_name.exe
is used, unless exeid is specified; then exeid.exe is used.

Argument Purpose

model_file Full name of model input file (model_name.mod)

+[exeid] Easy5 bypasses model generation and goes directly to analysis execution. File root_name.exe
is used, unless exeid is specified; then exeid.exe is used.

-l Relinks using the compiled model from file root_name.o. If an analysis file has been
included (in position 3), analysis follows the link.

-es Generates an input file for ESA using plot data from file root_name.ezrpd

Argument Purpose

analysis_file Full name of analysis command file (model_name.anl)

A blank bypasses analysis execution.

Reference Manual
External Variables

382
This will create an executable file named: my_model.exe.

2. To create a model executable from a model file named test_bed, and follow this with running an
analysis using an anl file named test_bed.simulation.ezanl, enter:
easy5x -B test_bed test_bed.ezmod test_bed.simulation.ezanl

This will create an executable file named test_bed.exe, and an output listing file named: test_bed.ezapl,
and if plots are generated, a plot file called: test_bed.ezrpd.

3. If you have already created the executable model and need only to run the analysis, then using the
same filenames used in the previous example, enter the following command:
easy5x -B test_bed + test_bed.simulation.ezanl

The "+" indicates that the model executable has already been created, and that it is named using the
root_name (i.e. in the above example the file named test_bed.exe exists). If the executable model uses
a different name, then include the name with the "+" sign. For example, if the executable is named
my_model.exe instead of test_bed.exe, then the above command would be:
easy5x -B test_bed +my_mod test_bed.simulation.ezanl

External Variables
External variables are set prior to the Easy5 execution command and can be used to customize Easy5
execution.. For complete information on how to setup and use external variables, see the section "External
(Environment) Variables".

Note: Additional examples are given in the last section of this appendix.

Note: For a list of all Easy5 external variables, enter the command:

easy5x -vars

To display the current values of Easy5 external variables that are set, enter the command:

easy5x -varset

383Appendix. D: Batch Mode Commands
External Variables
Examples:
The following examples show the various batch commands and Easy5 variable settings. These are for the
Linux Korn shell and any Easy5 Command Shell only.

1. To create a model executable, using model file my_model.mod; and execute the analysis program
using analysis file my_analysis.ezanl:

$ easy5x -B run1 my_model.ezmod my_analysis.ezanl

2. To just build a model executable with file my_model.mod and include additional binary code in the
link sequence (from pathname /blat/my_object.o):

$ export object=/blat/my_object.o

Variable
Name Purpose

applibn The pathname for an Easy5 application library or for an existing component library,
where n= 1,2,3, ... ,18.

Easy5 will automatically search for application libraries on its default component library
directory. If not found in that directory, it will search the current working directory.

You specify the entire pathname (minus the file identifier) to explicitly assign a
component library.

auxfile The name of the auxiliary input file to be used during analysis.

complib The name of the default component library to be used during the link phase. Default is
the Easy5 General Purpose block library

dmpfile The name of the DUMP DATA input file to be used during analysis.

ezdebug If set to yes, will use the -g FORTRAN compilation option and will execute the model
executable using the debugger. For complete information about the debugger and its
commands, consult the appropriate debugger manual or invoke the debugger's own help
command for online assistance.

ftnopt compilation of model is performed using options listed with this variable. To list Easy5
compiler options enter:

easy5x -B -def | grep ezfflags

ftnsave model is saved as root_name.f if set to yes.

macrofile Name of the operative library to be used by the model generation program, if one is
needed.

object Name of the user object code file to be included during the link phase

source Name of the user source code file to be appended to your Fortran model

userlib Name of the user library to be included during the link step.

Reference Manual
External Variables

384
$ easy5x -B run2 my_model.ezmod

3. To execute the analysis program using analysis file my_analysis.ezanl using a saved model executable
on file run2.exe:

$ easy5x -B run2 + my_analysis.ezanl

4. To access an auxiliary input file from file saved.dat; request a copy of your Fortran model; create a
new model; and execute the analysis program:

$ export auxfile=saved.dat

$ export ftnsave=yes

$ easy5x -B run3 my_model.ezmod my_analysis.ezanl

5. To access an Easy5 application library, xx.ezdf; update your own component library on pathname
/blat/macro/my_comp_lib.ezdf; and create a model executable using model file my_model.ezmod:

$ export applib1=xx

$ export macrofile=/blat/macro/my_comp_lib.ezdf

$ easy5x -B run4 my_model.mod

6. To execute Easy5's model generation program again and request use of the Fortran compiler options
-O -Nx 400, enter:

$ export ftnopt="-O -Nx 400"

$ easy5x -B run5 my_model.ezmod

Extraneous Easy5 Batch Files
Special "link files" are created when running the Easy5 batch mode, and are generally deleted by Easy5 when
the execution is finished. However, if these files are not deleted by the Easy5 program, you should delete these
files:

 APPDFn (where n=1,2,3,...18)
 AUXINP
 DATAA
 DATAM
 DMPDAT
 EZAX
 EZGPDF
 PLOTS

Note: When defining Windows environment variables, do not put quotes around the values, even
if it contains multiple values with blank space separators.

385Appendix. D: Batch Mode Commands
Command Definitions
 PLOTINPF

Command Definitions
To submit a batch job enter the "easy5x -B" command at a command prompt using the following format:

$ easy5x -B[root_name|options][model_file|options][analysis_file]

(Position 1) (Position 2) (Position 3)

The command is followed by one or more arguments, entered in up to three different "positions". A summary
of the position arguments is given in the following tables.

Python Multiprocessing
Easy5 batch processing can take advantage of the Python Multiprocessing and CSV modules. Two typical
use cases for this capability:

1. Suppose one wishes to run an overnight batch of analyses on a machine with several processors with
varying parameter values. The user would create a CSV file with parameter names on the first row
and parameter values on the subsequent rows:

Argument Purpose

root_name Base name for all Easy5 output files (.ezmgl, .f, .exe, .ezapl, etc.)

-help On-line help.

-def Displays the settings of all Easy5 internal variables

-vars Displays the settings of all Easy5 external variables

-version Displays the current version of the Easy5 engine

-home Displays the home directory path for Easy5 engine

Argument Purpose

model_file Full name of model input file (model_name.ezmod)

+[exeid] Easy5 bypasses model generation and goes directly to analysis execution. File
root_name.exe is used, unless exeid is specified; then exeid.exe is used.

-l Relinks using the compiled model from file root_name.o. If an analysis file has been
included (in position 3), analysis follows the link.

-es Generates an input file for ESA using plot data from root_name.ezrpd

Reference Manual
Python Multiprocessing

386
2. One can also define the batch in terms of modifier files (temporary settings files and auxiliary input
files). To do this, create a CSV file with the keyword "MODIFIERS" on the first row, and the names
of the modifier files on the subsequent rows, one name per cell. For example:

387Appendix. D: Batch Mode Commands
Python Multiprocessing
In this example, all cells of Row 3 are clear, so that row will correspond to baseline model conditions.

Each row of the batch starts with baseline conditions, the effects of the modifier files are not cumulative from
row to row.

Windows
Perhaps the most convenient command to invoke Python Multiprocessing, in an Easy5 Command Shell, is
simply

easy5mp <ModelName> <#OfProcessors> <CSVFileName> <AnalysisType> <AnalysisID>

which invokes %EZHOME%\easy5mp.bat.

Linux (or Windows)
In an Easy5 Command Shell or a Linux shell that properly defines the Easy5 environment, the user would
type

Reference Manual
Black Box (BBX) Export and Analysis

388
python $WSHOME/engine/easy5mp.py <ModelName> <#OfProcessors> <CSVFileName>
<AnalysisType> <AnalysisID>

The first argument <ModelName> is required. The remaining arguments are optional- default values are
assumed, if the user does not supply values:

<#OfProcessors> 1

<CSVFileName> <ModelName>.csv

<AnalysisType> simulation

<AnalysisID> simulation

The plot output files are named

<ModelName>.<AnalysisID>_Row1.ezrpd

ModelName>.<AnalysisID>_Row2.ezrpd

etc.

and the analysis output files are named

<ModelName>.<AnalysisID>_Row1.ezapl

<ModelName>.<AnalysisID>_Row2.ezapl

etc.

Black Box (BBX) Export and Analysis

Easy5 models can be packaged for batch simulation analysis by your customers or vendors as “black-box"
executables by selecting Build > Export Model As > Self contained (black box) executable. The executable
that is created is not licensed-managed, that is, it will run without a license on any computer with a
compatible operating system. Note, however, that only a single simulation analysis may be incorporated into
a BBX. Other analyses (linear analysis, steady-state and so on) as well as Multiple Analysis are not supported.

You are then prompted to enter an identifier for the analysis simulation input file that will form the baseline
analysis for the model, and an encryption key that will protect the data in the baseline analysis input file. A
new directory (ModelName_BBX) will be created and all of the necessary files placed there.

To run a BBX model after it has been exported (simply double-clicking on the .exe file is insufficient):

1. Open a shell window. Most any type of shell will do, such as a Windows Command shell, or Linux
C-shell. However, Python must be in the path.

2. cd to the BBX directory containing the exported model.

Note: The Python version must be 3.5 or higher.

Note: An "Easy5 MATLAB Interface Toolkit" feature is required to use this feature.

389Appendix. D: Batch Mode Commands
Black Box (BBX) Export and Analysis
3. Type: python ez5_bbx_run.py <ModelName> <AnalysisInputFileName>
<EncryptionKey> <AuxFileName>

where

 <AnalysisInputFileName> is the encrypted analysis input file (default:
ModelName.bbx.ezanl).

 <EncryptionKey> is the same EncryptionKey that was entered when the BBX was exported.
 <AuxFileName> is an optional unencrypted auxiliary input file. This auxiliary input file is where

the recipient of the model would perturb the baseline analysis conditions, according to the
instructions given by the provider of the model. See the Easy5 Reference Manual Topic "Auxiliary
Input File". The auxiliary input file should begin with the label "$BBX".

Consider for example the AirCycle/CabinAirControl demo model from the GD library. This model contains
a parameter named PressureInletVI. If this model were exported as a BBX, with encryption key "EASY5", a
new directory named CabinAirControl_BBX would be created containing the necessary files. In addition to
these files, one could create, with any text editor, a simple auxiliary input file named "bbx_aux" to perturb
the baseline value of PressureInletVI:

$BBX
PARAMETER VALUE
PressureInletVI = 410

Then to execute an analysis one would type in a shell in the CabinAirControl_BBX directory:

python ez5_bbx_run.py CabinAirControl CabinAirControl.bbx.ezanl
EASY5 bbx_aux

Reference Manual
Black Box (BBX) Export and Analysis

390

Appendix. E: Program Limits
MSC Nastran Implicit Nonlinear (SOL 600) User’s GuideReference Manual

E Program Limits

Reference Manual392
The Easy5 program can be used to model and analyze large dynamic systems. However, there are certain
limitations caused by dimension statements within the model generation and analysis programs. These limits
are listed below.

Modeling Limitations

FEATURE MAX. ALLOWED

model_name length 32 characters

"user-defined name" length 60 characters

Fortran and C component input/output name length 60 characters

Library component input/output name (incl. port name, if used) 19 characters

Library component port name length 12 characters

number of components in a library 200

components per model 5000

components per hierarchical level (per schematic page) 400

components + connections per model 10000

connection lines into + out-of a component 200

number of submodels 500

tables per model 1000

number of states per model 9999

number of sort blocks per model 9999

component dimension (per dimension parameter) 99999

dimension size (given by a vector or array) 9999999

opened libraries (gp not included) 50

user-defined names 10,000

dimension parameters (I, J, K, L, M, N) 5

feature parameters (C, D, E, F, G, H) 6

revision parameter (R) 1

393Appendix. E: Program Limits
Analysis Limitations

FEATURE MAX. ALLOWED

analysis settings file name length* 41-<model name>*

plotted quantities per simulation or steady-state 8000

stability margins parameters 10

print variables 40

maximum data plotted for Root Locus analysis 8000

frequency points plotted for Transfer Function analysis 2130

number of different sampling rates in discrete-time model 10

plot points for Plot Tables and Function Scan Analysis 999,999

Note: The length of the analysis settings file name depends on how large the model name is as
follows: # model name characters + # analysis settings characters < 41.

For example, if the model name uses the maximum allowed 32 characters, then the analysis
settings file name < 19 characters. However, if the model name is only 11 characters in
length, then the analysis name can be as long as 30 characters.

Reference Manual394

MSC.Fatigue Quick Start Guide

I n d e x
Reference Manual
Index

Numerics
2nd Time Incr, 265

A
Accelerator keys, 5
Adams integration method, 158
Adding a Component, 9
Adding Components, 6
Analyses

linear, 12
nonlinear, 11

Analysis
Eigenvalue Sensitivity Analysis, 116
Interactive Simulation, 163
Plot Tables Analysis, 232
Power Spectral Density Analysis, 233
Stability Margins Analysis, 278
Steady-State Analysis, 287
Transfer Function Analysis, 322

Analysis Data Form, 12
file menu, 14

Analysis menu, 198
Analysis Settings File, 14
auxfile, external variable, 128
Auxiliary Input File

auxfile, 19
creating, 18
data format, 21
labeled data, 19

B
BBX, 388
BCS Gear integration method, 157
BEGIN INITIALIZATION code statement, 153
BEGIN TERMINATION CODE command, 318
bindopt, external variable, 128

Black Box (BBX) Export and Analysis, 388
Block diagram modeling method, 214
Branch connection, 74
Build menu, 197

C
C code, 29

compiling external code, 43
discrete system modeling, 105

Change Names, menu, 344
Close... submodel menu, 302
CNT_LABEL_BELOW_LEFT, external variable, 128
CNT_LABEL_HEAD, external variable, 127
CNT_LABEL_OFF, external variable, 127
CNT_LABEL_VERTICAL, external variable, 127
Code

C code, 29
component, 55
mixed code, 46

Compiling External Code, 43
Component

code component, 55
Component Data Table, 60
Component modeling method, 215
Component shortcut menu, 204

Reference Manual

396
Components
Add Component menu, 6
adding components, 6
adding components by name, 10
adding FORTRAN components, 11
arrays, defining input, 231
data table, 60

defining outputs, 246
default names, 52
deleting, 100
dimension, 58
Extension component, 57
inputs, 52
locating, 253
moving groups of components, 252
moving individual components, 252
naming convention, 52
on-line information, 8
output, 52

Connecting components
connection line attributes, 80
custom connections, 72
incompatibly vectorized components, 75
port connections, 70

Connection components
branch connection, 74

Connection line
label options, 84

Connection line shortcut menu, 206
Continuous states, 283
Controllability matrix, 165
CPU Time, 272
CPUSEC, reserved word, 243
Create Executable menu, 119
Create Executable with Debug, menu, 120
Current Schematic menu, 140
D
Data

array parameters, 23
Excel, 93
integers, 130
logical variables, 130
parameters, 93
scalar parameters, 22
states, 93
tables, 93
tabular data, 26
types, 93
variables, 93

Debugger
creating executable with debug, 120
example of using symbolic debugger, 94, 97
executing an analysis with the debugger, 266

Declaration statement
delay state, 105
sample-and-hold state, 105

DECLARATIONS, statement, 131
Default names, 52
Delay state, 105
Delay states, 285
Deleting components, 100
Digital filters, 103
Digital modelling, 103
Dimensioned components, 58
Discrete systems

Transfer Function, 334
transition matrix, 371

Documenting the model, 109
DPR, reserved word, 246

E
EASY5

command options, 228
EASY5 Window

message line, 114
schematic window, 114

EASY5_BROWSER, external variable, 129
EASY5_FIRST_LIB, external variable, 126
EASY5_GROUP_LIB, external variable, 126
EASY5_IGNORE_LIB, external variable, 126
EASY5_OBJECT, external variable, 126, 177

397INDEX
EASY5_PDF_READER, external variable, 129
EASY5_SELECT_LIB, external variable, 126
EASY5_SITE_LIB, external variable, 126
EASY5_USER_LIB, external variable, 126
EASY5_XCOMP_DIR, external variable, 129
Edit menu, 192
Eigenvalue Sensitivity Analysis, 116

parameter, defining the, 117
Eigenvalues of linear model, 171
END INITIALIZATION code statement, 153
END TERMINATION CODE command, 318
Entire Hiearachy menu, 140
Environment Variables, 124
EQMO, subroutine, 118
Error controls, 223
Euler integration method, 157
Example of Calling Fortran from C, 48
Excel data, 93
Executable

output files, 121
source file, 122

Exit routines, 295
Expand... menu, 304
Extension components, 57
External code, 175
External Variable

setting and deleting external variables, 124
External Variables, 124
EZ_NO_CONFIRM, external variable, 129
ezdebug, external variable, 128
EZXLG, reserved word, 246

F
File menu, 190
FORTRAN
compiling external code, 43
DECLARATIONS, statement, 131
discrete system modeling, 105
integers, 130
logical variables, 130
matrix operations, 134, 183
non-executable statements, 131
reserved words, 132
see also EASY5 User’s Guide, Chapter 10
sort blocks, 278
sorting code, 135
START SORT command, 135
STOP SORT command, 135

Fortran
calling C code, 50

FPZ, reserved word, 246
Frequency response method, 326
ftnopt, external variable, 128
Function Scan Data Form

independent/dependent variables, defining, 137
plots, suppressing, 139
time, defining, 137
two independent variables, defining, 138

G
Graphic formats, 139
GRE, reserved word, 246
GRM, reserved word, 246
Grouop shortcut menu, 208

H
Help menu, 200
HIDE_CNT_OUTPUT_LABELS, external variable, 128
HIDE_CNT_SUBMODEL_LABELS, external variable, 128
HTML documentation of a model, 109
Huen integration method, 157
Hybrid models, 104
Hybrid systems, 104

I
ICCALC, reserved word, 243
IDELAY, reserved word, 107, 243
IERR, reserved word, 244, 246

Reference Manual

398
Implicit model, 145
INCALL, reserved word, 243
Info page, 8
Initial Conditions, 286

ICCALC flag, 243
Initialization of code, 152
Input

component, 52
INST, reserved word, 244
INT MODE, analysis command, 154, 358
Integration

accuracy, 361
Adams method, 158
BCS Gear method, 157
error controls, 162
Euler method, 157
fixed-step method, 155
Huen method, 157
methods, 153
numerical stability, 358
order, 155
problems during simulation, 272
Runge-Kutta method, 157
selection guidelines, 160
specifying integration mode, 258
step-size control, 161
user-defined method, 158
variable-step method, 155

Interactive Simulation, 163
INTG - termination mode flag, 319
INTG, reserved word, 244
ISTOP flag, 295
ISTOP, reserved word, 244
ITINC, reserved word, 244
IWRITE, reserved word, 245

L
Labeled Data Blocks, 19
Labels

external variables, 127
options, 84
submodel, 84, 302

Library
see EASY5 User’s Guide, Chapter 11

Linear analyses, 12
Linear model generation
continuous systems, 168
highly nonlinear systems, 172
linearity, measurement of, 174
linearization method, 170
matrices, 168
method, 168
sampled-data (discrete) systems, 175
sampled-data systems, 368
setting up, see Linear Model Generation Data Form
types of analyses, 163, 171

Linear Model Generation Data Form
inputs, defining linear model, 166
outputs, defining linear model, 167
saving linear model system matrices, 168

LINEAR, reserved word, 245
Link

EASY5_OBJECT method, 177
external code, 120, 175
link list method, 176
macro routines, 179

Link External Object menu, 176
Link list, 176

M
M, 118
Macros

integers, using, 181
linking macro routines, 179
logical variables, using, 181
modeling discrete systems, 105
RESUME SORT command, 277
see EASY5 User’s Guide, Chapter 12
sort blocks, 278
STOP SORT command, 277

Matrix
controllability, 165
discrete system transition matrix, 371
FORTRAN operations, 134, 183
modal, 165
observability, 165

Menu bar, 113

399INDEX
Menu(s)
Analysis menu, 198
Build menu, 197
closing menus, 203
Edit menu, 192
file, 113
File menu, 190
Help menu, 200
Menu Bar, 113
opening a menu, 113
opening menus via

accelerator key input, 5
arrow key input, 202

Options menu, 195
shortcut menu, 203
Submodel menu, 200
View Menu, 115
View menu, 194

Message line, 114
Metafile error, 226
Mixed code, 46
Modal matrix, 165
Model

damaged Model, 226
documenting and printing, 109
executable source file, 122
generation listing file, 122
hybrid, 104
implicit model, 145
information button, 113
sorting, 276

Model Info, 113
Modeling

block diagram method, 214
component method, 215
digital, 103
discrete (digital) systems, 103
fundamental, 213
hybrid systems, 104
state variable method, 218
user-defined component method, 217

Moving components, 252
Moving the window, 253
MULT ERROR BY, command, 162
Multiple Analysis Data Form
analysis settings file, 224
setting up the analysis, 220
temporary settings file, 224

MUX function, 68

N
Naming convention, components, 52
NEXT VALUE OF, statement, 105
Nonlinear Analyses, 11

O
Observability matrix, 165
ONE, reserved word, 246
Operating Point

creating an operating point, 228
defining from a simulation, 229
defining initial operating point, 16
file, 229
restoring an operating point, 223
saving a simulation operating point, 266
simulation initial operating point, 254
steady-state (equilibrium) point, 229

Options, 228
Options menu, 195
Output

component, 52
transfer function, 324

P
Parameter data, 93
PFLAG, reserved word, 245
PI, reserved word, 246
Plot Rate Multiplier (Print Rate), 263
Plot Tables Analysis, 232
Plotter

plot tables analysis, 232
see also EASY5 User’s Guide, Chapter 8

Plotting
plot all output data method, 262

Plotting Data
see EASY5 User’s Guide, Chapter 8

Plotting secondary rates, 265
PostScript files, 139

Reference Manual

400
Power Spectral Density Analysis, 233
outputs, 238
plots, 238
setting up, see Power Spectral Densitiy Data Form

Power Spectral Density Data Form
input, 234
input noise distribution, 235, 236
output, 234
plot data options, 236
time, defining, 234

PowerPoint graphics file, 139
Printing the model, 109

R
Reserved word

CPUSEC, 243
DPR, 246
EZXLG, 246
FPZ, 246
GRE, 246
GRM, 246
ICCALC, 243
IDELAY, 243
IERR, 244, 246
INCALL, 243
INST, 244
INTG, 244
ISTOP, 244
ITINC, 244
IWRITE, 245
LINEAR, 245
ONE, 246
PFLAG, 245
PI, 246
RPD, 246
TAU0, 245
TAUMAX, 245
TIME, 245, 313
TINC, 245
TMAX, 245
TSTEP, 245
ZERO, 246

RESUME SORT, command, 278
Root Locus Analysis, 246
Root locus analysis
method, 250
plots, 250
root locus zeros, 251
setting up, see Root Locus Data Form
zeros, calculating, 249

Root Locus Data Form
parameter, specifying the root locus, 248
plots, requesting, 250
zeros, calculating, 250

RPD, reserved word, 246
Runge-Kutta integration method, 157

S
Sample period, 105
SAMPLE PERIOD OF statement, 105
Sample states, 284
Sample-and-hold state, 105
Sates

continuous states, 283
Schematic shortcut menu, 203
Scroll Bar, 113
Shortcut menu, 203

component, 204
connection line, 206
group, 208
schematic, 203
submodel, 206
submodel stub, 207

Show Names, menu, 343
SHOW_CNT_PORT_LABELS, external variable, 128
Simulation

failure, 269
integration problems, 272
killing a run, 272
outputs, 267
plotting results, 260
printing results, 263
saving final operating point, 266
troubleshooting, 269

401INDEX
Simulation Data Form
integration mode, 258
plot specification form, 261
plotting, 260
print specification form, 264
print/plot increment, specifying, 260
printing, 263
secondary plotting and printing rates, 265
setting up a simulation, 254
simulation time, 257

Sorting code
FORTRAN sorting, 135

Stability Margins analysis, 278
method, 280
setting up, see Stability Margins Data Form

Stability Margins Data Form
parameters, defining, 279

Standard Components, 54
START SORT command, 135
State Variable Modeling Method, 218
States

defining states, 286
definition, 93
delay state declaration statement, 105
delay states, 285
error controls, 162, 223
initial condition, 286
outputs, 246
sample states, 284
sample-and-hold declaration statement, 105
switch states, 286

Steady-State
finding a single point, 290
finding multiple points, 290
guiding the analysis, 288
method, 292
operating point, 291
printing results, 291
troubleshooting, 293
types of analyses, 288
valid bounds, 288
Steady-State Data Form
number of iterations, defining, 289
printing results, 291
scan option, 290
setting up an analysis, 288

Stop Current Analysis menu, 272
Stop flags, 295
STOP SORT command, 135
STOP SORT, command, 278
Submodel menu, 200, 300
Submodel shortcut menu, 206
Submodel stub shortcut menu, 207
Submodels

attributes, 303
creating and using submodels, 292–305
defining/creating a submodel, 300
editing attributes, 303
expanding a submodel, 304
hierarchical layers,, 300
labels, 302
managing submodels, 304
opening/closing a submodel, 301

Switch states, 286, 305

T
Table data, 93
Table data format, 26
TAU0, reserved word, 245
TAUMAX, reserved word, 245
Temporary Settings file

applying to an analysis, 317
creating a new file, 313
entering and editing data, 314
undo temporary settings, 224

Termination commands, 318
Termination mode flag, 319
Time

defining analysis Time, 16
print/plot time increment, 260
testing on the value of TIME, 321

TIME, reserved word, 245, 313
TINC, reserved word, 245
TMAX, reserved word, 245

Reference Manual

402
Transfer Function analysis
method, 326
output listing, 325
outputs, 325
plots, 325
sampled data (discrete) systems, 328, 334
troubleshooting, 329

Transfer Function Analysis Data Form, 324
input, defining the transfer function, 323
plot, requesting a transfer function, 324

TSTEP, reserved word, 245

U
User-Defined component modeling method, 217
User-defined integration method, 158
User-defined names, 322

changing user-defined names, 344
defining, 342
menu options, 343

V
VALUE OF, statement, 105
Variable data, 93
Variables, Environment, 124
View Entire Schematic menu, 253
View menu, 115, 194

W
Window

basics, 114
locating components, 253
moving the window, 253

Word graphics file, 139
WSANLSPACE, external variable, 126
WSCONCOLOR, external variable, 127
WSDEBUG, external variable, 127
WSDEBUGGERNAME, external variable, 128
WSLIBDIR, external variable, 126
WSMFSPACE, external variable, 126
WSMODAUX1, external variable, 128
WSMODAUX2, external variable, 128
WSNOAUTO_RESULTS, external variable, 127
WSPLOT_AUTO_SWL_LO, external variable, 129
X
xtralib, external variable, 128

Z
ZERO, reserved word, 246
Zoom In menu, 253
Zoom Out menu, 253

	Reference Manual
	Preface
	Conventions Used in This Guide

	Reference Manual Topics
	Overview
	Accelerator Keys
	Adding Components
	Add Components Window
	Adding Components to the Schematic
	Add Components by Name Reference

	Analyses
	Nonlinear Analyses
	Linear Analyses

	Analysis Data Form
	Analysis Data Form Header
	Analysis Data Form

	Auxiliary Input File
	Analysis Title
	Time of the Analysis
	Initial Operating Point
	Model Explorer “Pickable” Fields
	Auxiliary Input File
	Creating an Auxiliary Input File
	Using an “auxfile” To Enter Blocks of Data
	Specifying a Label in an Auxiliary Input File

	Auxiliary Input File Data Format
	PARAMETER VALUES Command
	Scalar Parameter Data
	Array Parameter Data
	Expressions
	Tabular Data

	“Analysis Only” Mode
	Operations Allowed
	Disabled Functionality
	Creating a “Locked Configuration” Model for Distribution Purposes
	Using a Locked Configuration Easy5 Model

	Background Processes
	C Component
	Adding C Code
	Example C Code Component
	Adding C Declarations
	C Code Files and Structure

	Code Components
	Command Line Options
	Option Examples

	Compiling External Code
	Default Compiler Options
	Obtaining Current Compiler Options
	Setting Debug Compiler Options
	User Specified Compiler Options
	Examples of Compiling External Code
	Compiling and Linking Mixed Code

	Components
	Component Basics
	Blocks
	Standard Components
	Code Components
	User-defined Library Components
	Extension Components
	Dimensioned Components

	Component Data Table
	Documentation/Configuration Tab
	States Tab
	Variables Tab
	Version Tab
	User-Comments Tab

	Connecting Components
	Rules for Connecting Components
	Default Connections
	Port Connections
	Default Port Connection Points
	Custom Connections
	Making a Branch Connection
	Connecting Incompatibly Vectorized Components

	Connection Lines
	Moving Connection Line Endpoints
	Moving Connection Line Segments
	Changing an Anchored Connection Back to an Autoroute Connection
	Customized Line Routing
	Defining Connection Line Labels and Attributes
	Connection Line Navigation
	Submodel Connection Labels
	Connection Label Options
	Moving Submodel Connection Nodes
	Connection Line Color Dots

	Copying Components and Models
	Copying Components within a Model
	Copying Components From or To Another Model
	Copying Components With User-defined Names

	Data Display
	Data Types
	States
	Variables
	Parameters
	Tables

	Debugging the Model and Analysis
	Example of Using the Symbolic Debugger on Windows
	Example of Using the Symbolic Debugger on a Linux Platform

	Deleting Components and Connections
	Deleting Components
	Deleting Connections

	Discrete (Digital) System Analysis
	Operating Point Considerations
	Linear Analysis Considerations
	Integration Method Considerations

	Discrete (Digital) System Modeling
	Digital Models
	Hybrid Models
	Discrete System Modeling Using Fortran, C and LIbrary Components
	Matching TAU Method (obsolete)

	Documenting and Printing the Model
	Generating a Model Document File

	Exporting an Easy5 Model as a MAT EMX Function
	MAT function “ezmodel”

	Easy5 Window
	Description Lines
	Model Info
	Menu Bar
	Tool Bar
	Dockable Add Component WIndow
	Scroll Bars
	Message Line
	Schematic Window
	Working with Easy5 Windows

	Eigenvalue Sensitivity Analysis
	Setting up an Eigenvalue Sensitivity Analysis

	Eigenvalue Sensitivity Analysis Method
	Executable Model
	Create Executable
	Link External Object
	Solve Implicit Loops
	Force Explicit Typing
	Check for Duplicate Names
	Debug Mode
	Stop Create Executable

	Executable Output Files
	Create Executable Process
	Model Generation Listing File
	Executable Source File
	Executable Error File

	External (Environment) Variables
	Fortran Component
	Forced Explicit Typing
	Using Integer or Logical Variables in Fortran Code
	Adding Nonexecutable Fortran Statements
	Reserved Fortran Unit Numbers
	Adding Comments to Fortran Code
	Easy5 Reserved Words
	Calculating Initial Condition Values in a User-Code Component
	Easy5 Matrix Operations
	Sorting Fortran Component Code

	Function Scan Analysis
	Setting up a Function Scan Analysis
	Function Scan with Two Independent Values

	Function Scan Analysis Method
	Graphic Files, EMFs, and PostScript
	Generating the Schematic Block Diagram EMF Graphics File
	Generating Plotter EMF Graphics File
	Using EMF Graphics
	Overriding Hard copy and EMF Plot Curve and Grid Widths
	Exporting Plot Files
	Importing a PostScript File Into a Document

	Icon Editor
	Implicit Model
	Definition of an Implicit Model
	Example of an Implicit Model
	How to Break Implicit Loops

	Initial Condition Calculation
	Initialization Statement
	Integration Methods
	The Integration Method
	Integration Methods Available
	Definition of Terms
	The BCS Gear Method
	The Runge-Kutta Methods
	The Huen Method
	The Euler Method
	The Adams Method
	The User-defined Method

	Integration Method Selection Guidelines
	Guidelines for Setting Error Controls

	Interactive Simulation
	Linear Model Generation Analysis
	Types of Linear Model Generation Analysis
	Setting up a Linear Model Generation Analysis
	Controlling the Calculation
	Saving the Linear Model System Matrices

	Linear Model Generation Method
	Continuous Systems
	Stability Analysis for Sampled-Data Systems

	Linking External Code
	Linking Routines Using the Build Menu
	Linking Routines Using the EASY5_OBJECT Variable
	Linking Routines Using an Object Library
	Linking Library Component Routines

	Library Component Code
	Using Variable Dimensions in Library Component Code
	Using Integer or Logical Variables in Library Component Code
	Configurations
	Component Libraries

	Matrix Operations
	Matrix Equations
	Matrix Operation Subroutines

	Matrix Editor
	Creating a Data Table

	Menus
	File Menu
	Edit Menu
	View Menu
	Options Menu
	Library Menu
	Build Menu
	Analysis Menu
	Submodel Menu
	Help Menu
	Using Shortcut Keys to Open and Select Menus
	Using Arrow Keys to Select Menu Items
	Closing an Opened Menu

	Menus: Shortcut Menu
	Model Explorer Window
	Pick Method

	Model Files
	Modeling Fundamentals
	Example Problem
	Block Diagram Modeling Method
	Component “Systems Diagram” Modeling Method
	User-defined Component Modeling Method
	State Variable Modeling Method

	Multiple Analysis
	Setting up Multiple Analysis
	Understanding the Setup Form
	Defining an Analysis Property

	Open Model Dialog
	Bypassing the Open Model Dialog
	Starting a New Model
	Opening an Existing Model
	Opening a Damaged Model
	Checking Background Processes

	Operating Point
	Creating an Operating Point
	Operating Point Files
	Editing the Operating Point File

	Parameters - Defining Input Values
	Matrix Editor Window

	Plot Tables Analysis
	Setting up a Plot Tables Analysis

	Power Spectral Density Analysis
	The Power Spectral Density Analysis Data Form
	The PSD Input Noise Distribution Parameters Form
	Power Spectral Density Analysis Outputs

	Power Spectral Density Analysis Method
	Print Options
	Windows Print Options
	Linux Print Options

	Reserved Words
	General Reserved Words
	Physical and Mathematical Constants Reserved Words

	Root Locus Analysis
	Setting up a Root Locus Analysis
	Root Locus Analysis Method

	Schematic Manipulation
	Moving Components
	Moving the Window
	Viewing the Entire Schematic
	Returning to the Previous Schematic View
	Locating Components

	Simulation Analysis
	Setting up a Simulation
	Setting Up Simulation Options
	Setting up the Integration
	Setting up Simulation Plots
	Setting up Simulation Print Output
	Specifying Secondary Plotting and Printing Rates
	Saving a Final Simulation Operating Point
	Executing the Simulation
	Simulation Outputs Results

	Simulation Monitor
	What is the Simulation Monitor?
	Activating the Simulation Monitor
	Simulation Monitor Plotter Features

	Simulation Troubleshooting
	Type of Failure
	Simulation Failure Error Messages
	Write Your Own Diagnostics to the Output Listing File
	Monitoring CPU Time During a Simulation
	Killing a Simulation Run
	Integration Problems

	Single Call Analysis
	Sort Blocks
	Model Sorting
	Defining Sort Blocks
	Fortran and Library Component Sort Blocks

	Stability Margins Analysis
	Setting up a Stability Margins Analysis
	Limitations

	Stability Margin Analysis Method
	States
	Continuous States
	Sample States
	Delay States

	States: Defining Values and Controls
	State Initial Conditions
	Error Controls
	Freezing States

	Steady-State Analysis
	Setting up a Steady-State Analysis
	Steady-State Analysis Outputs

	Steady-State Analysis Method
	Steady-State Analysis Troubleshooting
	Steady-State May Fail to Converge
	Overcoming Steady-State Non-Convergence

	Stop and Exit Flags
	Terminating Using the ISTOP Flag

	Submodels
	Submodel Menu
	Defining a Submodel
	Opening and Closing a Submodel
	Submodel Labels
	Submodel Connection Lines
	Editing Submodel Properties
	Expanding a Submodel
	Navigating Submodels

	Switch States
	What Switch States Represent
	The Advantages of Switch States
	Using Switch-State Standard Components
	Using Switch States in User Code and Library Components
	Example of Using Switch States

	Temporary Settings File
	Creating a New Temporary Settings File
	Entering and Editing Data in the Temporary Settings Editor
	Applying a Temporary Settings File to an Analysis
	Loading Temporary Settings Data Into the Model

	Termination Commands
	Text Editor
	User-Defined Text Editor

	TIME - Testing on the Value of Time
	Transfer Function Analysis
	The Transfer Function Data Form
	Specifying the Transfer Function Input
	Specifying the Transfer Function Output
	Requesting a Frequency Response Plot
	Transfer Function Analysis Output Data

	Transfer Function Analysis Methods
	Frequency Response Method
	Selecting Frequency Points
	Transfer Function Analysis Method Selection
	Coordinate Transformation

	Transfer Function Troubleshooting
	Transfer Function of Sampled Data Systems
	Stability Margins for Sampled Data Systems
	Single Rate Systems
	Multi-Rate Systems

	User-Defined Names
	Defining User-defined Names
	User-defined Name Menu Options
	Resolving User-Defined Name Conflicts
	Changing User-Defined Names

	References
	Suggested Reading

	Summary of Analysis Commands
	Overview
	Data Input Commands
	State Control Commands
	Operating Point Commands
	Eigenvalue Sensitivity Analysis
	Function Scan Analysis Commands
	Linear Model Analysis Commands
	Root Locus Analysis Commands
	Simulation Analysis Commands
	Stability Margin Analysis Commands
	Steady-State Analysis Commands
	Transfer Function Analysis
	Plot Commands
	Print Commands

	Guide to Numerical Integration
	Overview
	Numerical Stability
	Accuracy and Error Control
	Integration Method Selection Guidelines

	Discrete Analysis Techniques
	Overview
	Linear Sampled-Data System Equations
	Numerical Calculation of Continuous-System Transition Matrix

	Discrete System Transition Matrix
	Total Transition Matrix for a Single-Rate System
	The Discrete Linear-Model Matrices for a Single-Rate System

	A Single-Rate Example
	Total Transition Matrix for a Multi-Rate System

	Batch Mode Commands
	Overview
	Batch Mode Command
	Examples of Batch Commands

	External Variables
	Examples:
	Extraneous Easy5 Batch Files

	Command Definitions
	Python Multiprocessing
	Windows
	Linux (or Windows)

	Black Box (BBX) Export and Analysis

	Program Limits
	Modeling Limitations
	Analysis Limitations

	main:

